1932

Abstract

Zeolitic membranes have been an active area of research for at least 25 years. Continuous and creative improvements in the materials chemistry of membrane synthesis and in the understanding and predictability of membrane diffusion and separations have been achieved. Activity continues unabated and has increased with the introduction of new compositions such as metal-organic frameworks and other materials to the field. The economics of implementing today's best zeolitic membranes and the achievable improvements in zeolitic membrane systems are approaching commercial attractiveness, but many significant challenges remain as competing membrane technologies are also advanced.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070317-124605
2018-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/48/1/annurev-matsci-070317-124605.html?itemId=/content/journals/10.1146/annurev-matsci-070317-124605&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Fedosov DA, Smirnov AV, Shkirskiy VV, Voskoboynikov T, Ivanova II 2015. Methanol dehydration in NaA zeolite membrane reactor. J. Membr. Sci. 486:189–94
    [Google Scholar]
  2. 2.  Kim SJ, Liu Y, Moore JS, Dixit RS, Pendergast JG et al. 2016. Thin hydrogen-selective SAPO-34 zeolite membranes for enhanced conversion and selectivity in propane dehydrogenation membrane reactors. Chem. Mater. 28:4397–402
    [Google Scholar]
  3. 3.  Sirkar KK, Fane AG, Wang R, Wickramasinghe SR 2015. Process intensification with selected membrane processes. Chem. Eng. Process. 87:16–25
    [Google Scholar]
  4. 4.  Drioli E, Brunetti A, Profioa GD, Barbieria G 2012. Process intensification strategies and membrane engineering. Green Chem 14:1561–72
    [Google Scholar]
  5. 5.  2012. Honeywell UOP technology is used to clean natural gas on FPSO vessels. Membr. Technol. 2012:5
    [Google Scholar]
  6. 6. Greenbelt Resour. Corp. 2013. Greenbelt Resources adds Hitachi Zosen Membrane for energy efficient ethanol dehydration. Business Wire Oct. 24. http://www.businesswire.com/news/home/20131024006714/en/Greenbelt-Resources-Adds-Hitachi-Zosen-Membrane-Energy
  7. 7.  Morigami Y, Kondo M, Abe J, Kita H, Okamoto K 2001. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep. Purif. Technol. 25:251–60
    [Google Scholar]
  8. 8.  Suzuki H 1987. Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and process for production thereof US Patent 4,699,892
  9. 9.  Haag WO, Tsikoyiannis JG 1991. Membrane composed of a pure molecular sieve US Patent 5,019,263
  10. 10. IZA-SC. 2017. Database of zeolite structures http://www.iza-structure.org/databases/
  11. 11.  Bein T 1996. Synthesis and applications of molecular sieve layers and membranes. Chem. Mater. 8:1636–53
    [Google Scholar]
  12. 12.  Geus ER, den Exter MJ, van Bekkum H 1992. Synthesis and characterization of zeolite (MFI) membranes on porous ceramic supports. J. Chem. Soc. Faraday Trans. 88:3101–9
    [Google Scholar]
  13. 13.  Rangnekar N, Mittal N, Elyassi B, Caro J, Tsapatsis M 2015. Zeolite membranes—a review and comparison with MOFs. Chem. Soc. Rev. 44:7128–54
    [Google Scholar]
  14. 14.  Feng C, Khulbe KC, Matsuura T, Farnood R, Ismail AF 2015. Recent progress in zeolite/zeotype membranes. J. Membr. Sci. Res. 1:49–72
    [Google Scholar]
  15. 15.  Jeon MY, Kim D, Kumar P, Lee PS, Rangnekar N et al. 2017. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543:690–94
    [Google Scholar]
  16. 16.  Liu YY, Ng ZF, Khan EA, Jeong HK, Ching CB, Lai ZP 2009. Synthesis of continuous MOF-5 membranes on porous alpha-alumina substrates. Micropor. Mesopor. Mater. 118:296–301
    [Google Scholar]
  17. 17.  Xu R, Zhu G, Yin X, Wan X, Qiu S 2006. In situ growth of AlPO4-5 molecular sieve on stainless steel support. Micropor. Mesopor. Mater. 90:39–44
    [Google Scholar]
  18. 18.  Martínez Galeano Y, Cornaglia L, Tarditi AM 2016. NaA zeolite membranes synthesized on top of APTES-modified porous stainless steel substrates. J. Membr. Sci. 512:93–103
    [Google Scholar]
  19. 19.  Peng Y, Zhan Z, Shan L, Li X, Wang Z, Yan Y 2013. Preparation of zeolite MFI membranes on defective macroporous alumina supports by a novel wetting–rubbing seeding method: role of wetting agent. J. Membr. Sci. 444:60–69
    [Google Scholar]
  20. 20.  Ma J, Shao J, Wang Z, Yan Y 2014. Preparation of zeolite NaA membranes on macroporous alumina supports by secondary growth of gel layers. Ind. Eng. Chem. Res. 65:6121–30
    [Google Scholar]
  21. 21.  Jiang J, Wang X, Zhang Y, Liu D, Gu X 2015. Fabrication of pure-phase CHA zeolite membranes with ball-milled seeds at low K+ concentration. Micropor. Mesopor. Mater. 215:98–108
    [Google Scholar]
  22. 22.  Dong W-Y, Long Y-C 2000. Preparation of an MFI-type zeolite membrane on a porous glass disc by substrate self-transformation. Chem. Commun. 12:1067–68
    [Google Scholar]
  23. 23.  Li YS, Yang WS 2015. Molecular sieve membranes: from 3D zeolites to 2D MOFs. Chin. J. Catal. 36:692–97
    [Google Scholar]
  24. 24.  Liu W, Post P, Williams JL, Post P, Xie Y 2007. Multi-channel cross-flow porous device US Patent 7,169,213
  25. 25.  Fekety CR, Kinney LD, Liu W, Song Z 2009. Zeolite membrane structures and methods of making zeolite membrane structures WO Patent Appl. 2009005745A1
  26. 26.  Liu W, Zhang J, Canfield N, Saraf L 2011. Preparation of robust, thin zeolite membrane sheet for molecular separation. Ind. Eng. Chem. Res. 50:11677–89
    [Google Scholar]
  27. 27.  Ge Q, Wang Z, Yan Y 2009. High-performance zeolite NaA membranes on polymer-zeolite composite hollow fiber supports. J. Am. Chem. Soc. 131:17056–57
    [Google Scholar]
  28. 28.  Choi J, Jeong HK, Snyder MA, Stoeger JA, Masel RI, Tsapatsis M 2009. Grain boundary elimination in a zeolite membrane by rapid thermal processing. Science 325:590–93
    [Google Scholar]
  29. 29.  Schillo MC, Park IS, Chiu WV, Verweij H 2010. Rapid thermal processing of inorganic membranes. J. Membr. Sci. 362:127–33
    [Google Scholar]
  30. 30.  Lee T, Choi J, Tsapatsis M 2013. On the performance of c-oriented MFI zeolite membranes treated by rapid thermal processing. J. Membr. Sci. 436:79–89
    [Google Scholar]
  31. 31.  Lin YS, Duke MC 2013. Recent progress in polycrystalline zeolite membrane research. Curr. Opin. Chem. Eng. 2:209–16
    [Google Scholar]
  32. 32.  Chen Z, Zeng J, Lv D, Gao J, Zhang J et al. 2016. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes. R. Soc. Open Sci. 3:160552–65
    [Google Scholar]
  33. 33.  Centrone A, Yang Y, Speakman S, Bromberg L, Rutledge GC, Hatton TA 2010. Growth of metal organic frameworks on polymer surfaces. J. Am. Chem. Soc. 132:15687–91
    [Google Scholar]
  34. 34.  Yao J, Dong D, Li D, He L, Xu G, Wang H 2011. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem. Commun. 47:2559–61
    [Google Scholar]
  35. 35.  Brown AJ, Brunelli NA, Eum K, Rashidin F, Johnson JR et al. 2014. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 345:72–75
    [Google Scholar]
  36. 36.  Shafiei K, Pakdehi SG, Moghaddam MK, Toraj Mohammadi T 2015. Synthesis of NaA and NaX zeolite membranes by fumed silica via clear solution gel. Sep. Sci. Technol. 50:136–41
    [Google Scholar]
  37. 37.  Chen H, Li Y, Yang W 2007. Preparation of silicalite-1 membrane by solution-filling method and its alcohol extraction properties. J. Membr. Sci. 296:122–30
    [Google Scholar]
  38. 38.  Care J, Noack M 2008. Zeolite membranes—recent developments and progress. Micropor. Mesopor. Mater. 115:215–33
    [Google Scholar]
  39. 39.  Agrawal KV, Topuz B, Pham TCT, Nguyen TH, Sauer N et al. 2015. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers. Adv. Mater. 27:3243–49
    [Google Scholar]
  40. 40.  Lai ZP, Bonilla G, Diaz I, Nery JG, Sujaoti K et al. 2003. Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300:456–60
    [Google Scholar]
  41. 41.  Pham TCT, Nguyen TH, Yoon KB 2013. Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation. Angew. Chem. Int. Ed. 52:8693–98
    [Google Scholar]
  42. 42.  Liu Y, Li Y, Cai R, Yang W 2012. Suppression of twins in b-oriented MFI molecular sieve films under microwave irradiation. Chem. Commun. 48:6782–84
    [Google Scholar]
  43. 43.  Zhang H, Xiao Q, Guo X, Li N, Kumar P et al. 2016. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports. Angew. Chem. Int. Ed. 55:7184–87
    [Google Scholar]
  44. 44.  Lindmark J, Hedlund J, Wirawan SK, Creaser D, Li M et al. 2010. Impregnation of zeolite membranes for enhanced selectivity. J. Membr. Sci. 365:188–97
    [Google Scholar]
  45. 45.  Li S, Falconer JL, Noble RD 2008. SAPO-34 membranes for CO2/CH4 separations: effect of Si/Al ratio. Micropor. Mesopor. Mater. 110:310–17
    [Google Scholar]
  46. 46.  Zhang Y, Avila AM, Tokay B, Funke HH, Falconer JL, Noble RD 2010. Blocking defects in SAPO-34 membranes with cyclodextrin. J. Membr. Sci. 358:7–12
    [Google Scholar]
  47. 47.  Kim S-J, Liu Y, Moore JS, Dixit RS, Pendergast JG Jr. et al. 2016. Thin hydrogen-selective SAPO-34 zeolite membranes for enhanced conversion and selectivity in propane dehydrogenation membrane reactors. Chem. Mater. 28:4397–402
    [Google Scholar]
  48. 48.  Huang Y, Wang L, Song Z, Li S, Yu M 2015. Growth of high-quality, thickness-reduced zeolite membranes towards N2/CH4 separation using high-aspect-ratio seeds. Angew. Chem. Int. Ed. 54:10843–47
    [Google Scholar]
  49. 49.  Shi H 2015. Organic template-free synthesis of SAPO-34 molecular sieve membranes for CO2-CH4 separation. RSC Adv 5:38330–33
    [Google Scholar]
  50. 50.  Zheng YH, Hu N, Wang HM, Bu N, Zhang F, Zhou RF 2015. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. J. Membr. Sci. 475:303–10
    [Google Scholar]
  51. 51.  Wu T, Diaz MC, Zheng YH, Zhou RF, Funke HH et al. 2015. Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes. J. Membr. Sci. 473:201–9
    [Google Scholar]
  52. 52.  Himeno S, Tomita T, Suzuki K, Nakayama K, Yajima K, Yoshida S 2007. Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind. Eng. Chem. Res. 46:6989–97
    [Google Scholar]
  53. 53.  Uchikawa T, Yajima K, Nonaka H, Tomita T 2013. Method for production of DDR type zeolite membrane US Patent 8,377,838
  54. 54.  Wu T, Wang B, Lu ZL, Zhou RF, Chen XS 2014. Alumina-supported AlPO-18 membranes for CO2/CH4 separation. J. Membr. Sci. 471:338–46
    [Google Scholar]
  55. 55.  Wang B, Hu N, Wang HM, Zheng YH, Zhou RF 2015. Improved AlPO-18 membranes for light gas separation. J. Mater. Chem. A 3:12205–12
    [Google Scholar]
  56. 56.  Zhong S, Bua N, Zhou R, Jin W, Yu M, Li S 2016. Aluminophosphate-17 and silicoaluminophosphate-17 membranes for CO2 separations. J. Membr. Sci. 520:507–14
    [Google Scholar]
  57. 57.  Cui Y, Kita H, Okamoto KI 2004. Preparation and gas separation performance of zeolite T membrane. J. Mater. Chem. 14:924–32
    [Google Scholar]
  58. 58.  Bernal MP, Piera E, Coronas J, Menendez M, Santamaria J 2000. Mordenite and ZSM-5 hydrophilic tubular membranes for the separation of gas phase mixtures. Catal. Today 56:221–27
    [Google Scholar]
  59. 59.  Guan G, Kusakabe K, Morooka S 2001. Synthesis and permeation properties of ion-exchanged ETS-4 tubular membranes. Micropor. Mesopor. Mater. 50:109–20
    [Google Scholar]
  60. 60.  Li KD, Tian ZJ, Li XL, Xu RS, Xu YP et al. 2012. Ionothermal synthesis of aluminophosphate molecular sieve membranes through substrate surface conversion. Angew. Chem. Int. Ed. 51:4397–400
    [Google Scholar]
  61. 61.  Li XL, Li KD, Tao S, Ma HJ, Xu RS et al. 2016. Ionothermal synthesis of LTA-type aluminophosphate molecular sieve membranes with gas separation performance. Micropor. Mesopor. Mater. 228:45–53
    [Google Scholar]
  62. 62.  Truter LA, Ordomsky VV, Nijhuis TA, Schouten JC 2012. Preparation of ZSM-5 zeolite coatings within capillary microchannels. J. Mater. Chem. 22:15976–80
    [Google Scholar]
  63. 63.  Pham TCT, Kim HS, Yoon KB 2011. Growth of uniformly oriented silica MFI and BEA zeolite films on substrates. Science 334:1533–38
    [Google Scholar]
  64. 64.  Chun YS, Ha K, Lee Y-J, Lee JS, Kim HS et al. 2002. Diisocyanates as novel molecular binders for monolayer assembly of zeolite crystals on glass. Chem. Commun.1846–47
  65. 65.  Huang A, Liang F, Steinbach F, Caro J 2010. Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker. J. Membr. Sci. 350:5–9
    [Google Scholar]
  66. 66.  Chen X, Wang J, Yin D, Yang J, Lu J et al. 2013. High-performance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method. AIChE J 59:936–47
    [Google Scholar]
  67. 67.  Algieri C, Bernardo P, Barbieri G, Drioli E 2009. A novel seeding procedure for preparing tubular NaY zeolite membranes. Micropor. Mesopor. Mater. 119:129–36
    [Google Scholar]
  68. 68.  Varoon K, Zhang X, Elyassi B, Brewer DD, Gettel M et al. 2011. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334:72–75
    [Google Scholar]
  69. 69.  Li Y, Wang W 2008. Microwave synthesis of zeolite membranes: a review. J. Membr. Sci. 316:3–17
    [Google Scholar]
  70. 70.  Yoo Y, Lai ZP, Jeong HK 2009. Fabrication of MOF-5 membranes using microwave induced rapid seeding and solvothermal secondary growth. Micropor. Mesopor. Mater. 123:100–6
    [Google Scholar]
  71. 71.  Zhao Z, Ma X, Li Z, Lin YS 2011. Synthesis, characterization and gas transport properties of MOF-5 membranes. J. Membr. Sci. 382:82–90
    [Google Scholar]
  72. 72.  Fan L, Xue M, Kang Z, Qiu S 2012. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. J. Mater. Chem. 22:25272–76
    [Google Scholar]
  73. 73.  Kwon HT, Jeong H-K 2013. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 135:10763–68
    [Google Scholar]
  74. 74.  Bux H, Feldhoff A, Cravillon J, Wiebcke M, Li YS, Caro J 2011. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chem. Mater. 23:2262–69
    [Google Scholar]
  75. 75.  Kwon HT, Jeong H-K, Lee AS, An HS, Lee JS 2015. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J. Am. Chem. Soc. 137:12304–11
    [Google Scholar]
  76. 76.  Li YS, Liang FY, Bux H, Feldhoff A, Yang WS, Caro J 2010. Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. Angew. Chem. Int. Ed. 49:548–51
    [Google Scholar]
  77. 77.  Huang A, Chen Y, Wang N, Hu Z, Jiang J, Caro J 2012. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation. Chem. Commun. 48:10981–83
    [Google Scholar]
  78. 78.  Hu Y, Dong X, Nan J, Jin W, Ren X et al. 2011. Metal-organic framework membranes fabricated via reactive seeding. Chem. Commun. 47:737–39
    [Google Scholar]
  79. 79.  Zhang F, Zou X, Gao X, Fan S, Sun F et al. 2012. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability. Adv. Funct. Mater. 22:3583–90
    [Google Scholar]
  80. 80.  Nagaraju D, Bhagat DG, Banerjee R, Kharul UK 2013. In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation. J. Mater. Chem. A 1:8828
    [Google Scholar]
  81. 81.  Guo H, Zhu G, Hewitt IJ, Qiu S 2009. “Twin copper source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc. 131:1646–47
    [Google Scholar]
  82. 82.  Peng Y, Li Y, Ban Y, Jin H, Jiao W et al. 2014. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346:1356–59
    [Google Scholar]
  83. 83.  Bétard A, Bux HG, Henke S, Zacher D, Caro J, Fischer RA 2012. Fabrication of a CO2-selective membrane by stepwise liquid-phase deposition of an alkyl ether functionalized pillared-layered metal-organic framework [Cu2L2P]n on a macroporous support. Micropor. Mesopor. Mater. 150:76–82
    [Google Scholar]
  84. 84.  Kind M, Wöll C 2009. Organic surfaces exposed by self-assembled organothiol monolayers: preparation, characterization, and application. Prog. Surf. Sci. 84:230–78
    [Google Scholar]
  85. 85.  Fan S, Sun F, Xie J, Guo J, Zhang L et al. 2013. Facile synthesis of a continuous thin Cu(bipy)2(SiF6) membrane with selectivity towards hydrogen. J. Mater. Chem. A 1:11438–42
    [Google Scholar]
  86. 86.  Ben T, Lu C, Pei C, Xu S, Qiu S 2012. Polymer-supported and free-standing metal-organic framework membrane. Chem. Eur. J. 18:10250–53
    [Google Scholar]
  87. 87.  Nan J, Dong X, Wang W, Jin W, Xu N 2011. Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support. Langmuir 27:4309–12
    [Google Scholar]
  88. 88.  Barrer RM 1990. Porous crystal membranes. J. Chem. Soc. Faraday Trans. 76:71123–30
    [Google Scholar]
  89. 89.  Barrer RM 1992. Single porous crystal membranes: mixtures in steady flow. J. Chem. Soc. Faraday Trans. 88:101463–71
    [Google Scholar]
  90. 90.  Côté AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM 2005. Porous, crystalline, covalent organic frameworks. Science 310:1166–70
    [Google Scholar]
  91. 91.  Waller PJ, Gándara F, Yaghi OM 2015. Chemistry of covalent organic frameworks. Acc. Chem. Res. 48:3053–63
    [Google Scholar]
  92. 92.  Waller PJ, Lyle SJ, Osborn Popp TM, Diercks CS, Reimer JA, Yaghi OM 2016. Chemical conversion of linkages in covalent organic frameworks. J. Am. Chem. Soc. 138:15519–22
    [Google Scholar]
  93. 93.  Li G, Zhang K, Tsuru T 2017. Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets. ACS Appl. Mater. Interfaces. 9:8433–36
    [Google Scholar]
  94. 94.  Zhou W, Wua H, Yildirim T 2010. Structural stability and elastic properties of prototypical covalent organic frameworks. Chem. Phys. Lett. 499:103–7
    [Google Scholar]
  95. 95.  Hao D, Zhang J, Lu H, Leng W, Ge R et al. 2014. Fabrication of a COF-5 membrane on a functionalized α-Al2O3 ceramic support using a microwave irradiation method. Chem. Commun 2014:1462–64
    [Google Scholar]
  96. 96.  Lu H, Wang C, Chen J, Ge R, Leng W et al. 2015. A novel 3D covalent organic framework membrane grown on a porous α-Al2O3 substrate under solvothermal conditions. Chem. Commun 2015:15562–65
    [Google Scholar]
  97. 97.  Tozawa1 T, Jones JTA, Swamy SI, Jiang S, Adams DJ 2009. Porous organic cages. Nature Mater 8:973–78
    [Google Scholar]
  98. 98.  Hasell T, Chong SY, Jelfs KE, Adams DJ, Cooper AI 2012. Porous organic cage nanocrystals by solution mixing. J. Am. Chem. Soc. 134:588–98
    [Google Scholar]
  99. 99.  Song Q, Jiang S, Hasell T, Liu M, Sun S et al. 2016. Porous organic cage thin films and molecular-sieving membranes. Adv. Mater. 28:2629–37
    [Google Scholar]
  100. 100.  Jones JTA, Hasell T, Wu X, Bacsa J, Jelfs KE et al. 2011. Modular and predictable assembly of porous organic molecular crystals. Nature 474:367–71
    [Google Scholar]
  101. 101.  Jiang S, Jones JTA, Hasell T, Blythe CE, Adams DJ et al. 2011. Porous organic molecular solids by dynamic covalent scrambling. Nat. Commun. 2:1–6
    [Google Scholar]
  102. 102.  Stankiewicz AI, Moulijn JA 2000. Process intensification: transforming chemical engineering. Chem. Eng. Prog. 2000:22–34
    [Google Scholar]
  103. 103.  Gabrielli P, Gazzani M, Mazzotti M 2017. On the optimal design of membrane-based gas separation processes. J. Membr. Sci. 526:118–30
    [Google Scholar]
  104. 104.  Drioli E, Stankiewicz AI, Macedonio F 2011. Membrane engineering in process intensification: an overview. J. Membr. Sci. 380:1–8
    [Google Scholar]
  105. 105.  Sirkar KK, Fane AG, Wang R, Wickramasinghe SR 2015. Process intensification with selected membrane processes. Chem. Eng. Proc. 87:16–25
    [Google Scholar]
  106. 106.  Avila AM, Arancibia EL 2016. On a rational performance evaluation for the development of inorganic membrane technology in gas separation and membrane reactors. Int. J. Chem. React. Eng. 14:4875–85
    [Google Scholar]
  107. 107.  McLeary EE, Jansen JC, Kapteijn F 2006. Zeolite based films, membranes and membrane reactors: progress and prospects. Micropor. Mesopor. Mater. 90:198–220
    [Google Scholar]
  108. 108.  Lima FV, Daoutidis P, Tsapatsis M 2016. Modeling, optimization, and cost analysis of an IGCC plant with a membrane reactor for carbon capture. AIChE J 62:51568–80
    [Google Scholar]
  109. 109.  Sawamura K, Aizawa M, Shimizu T 2016. Zeolite membrane separation and recovery system for CO2 US Patent 9,333,457
  110. 110.  Lai WF 1998. Low alkaline inverted in-situ crystallized zeolite membrane US Patent 5,849,980
  111. 111.  Barri SAI, Bratton GJ, Naylor TV 1994. Process for the production of a membrane US Patent 5,362,522
  112. 112.  Okamoto K, Kita H, Kondo M, Miyake N, Matsuo Y 1996. Membrane for liquid mixture separation US Patent 5,554,286
  113. 113.  Gascon J, Kapteijn F, Zornoza F, Sebastián F, Casado C, Coronas J 2012. Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives. Chem. Mater. 24:2829–44
    [Google Scholar]
  114. 114.  Tang Z, Li LF 2015. Composite membranes for olefin/paraffin separation US Patent Appl. 20150321141
  115. 115.  Sawamura K, Shinoya K, Tani M, Fujita S, Okada M 2016. Process for separation and recovery of olefin from mixture of paraffin and olefin US Patent 9,403,740
  116. 116.  Robeson LM 1991. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62:165–85
    [Google Scholar]
  117. 117.  Korelskiy D, Ye P, Fouladvand S, Karimi S, Sjöberg S, Hedlund J 2015. Efficient ceramic zeolite membranes for CO2/H2 separation. J. Mater. Chem. A 3:12500–6
    [Google Scholar]
  118. 118.  Mittal N, Bai P, Kelloway A, Siepmann JI, Daoutidis P, Tsapatsis M 2016. A mathematical model for zeolite membrane module performance and its use for techno-economic evaluation of improved energy efficiency hybrid membrane-distillation processes for butane isomer separations. J. Membr. Sci. 520:434–49
    [Google Scholar]
  119. 119.  Costa E, Sotelo JL, Calleja G, Marrón C 1981. Adsorption of binary and ternary hydrocarbon gas mixtures on activated carbon: experimental determination and theoretical prediction of the ternary equilibrium data. AIChE J 27:15–12
    [Google Scholar]
  120. 120.  Bhattacharya S, Hwang ST 1997. Concentration polarization, separation factor, and Peclet number in membrane processes. J. Membr. Sci. 132:73–90
    [Google Scholar]
  121. 121.  Krishna R, Wesselingh JA 1997. The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci. 52:6861–911
    [Google Scholar]
  122. 122.  Smit B, Krishna R 2003. Molecular simulations in zeolitic process design. Chem. Eng. Sci. 58:557–68
    [Google Scholar]
  123. 123.  Krishna R, Baur R 2003. Modelling issues in zeolite based separation processes. Sep. Purif. Technol. 33:213–54
    [Google Scholar]
  124. 124.  Krishna R, van Baten JM 2008. Diffusion of hydrocarbon mixtures in MFI zeolite: influence of intersection blocking. Chem. Eng. J. 140:614–20
    [Google Scholar]
  125. 125.  Krishna R, van Baten JM 2008. Insights into diffusion of gases in zeolites gained from molecular dynamics simulations. Micropor. Mesopor. Mater. 109:91–108
    [Google Scholar]
  126. 126.  Krishna R, van Baten JM 2011. A simplified procedure for estimation of mixture permeances from unary permeation data. J. Membr. Sci. 367:204–10
    [Google Scholar]
  127. 127.  Krishna R, van Baten JM 2011. Maxwell–Stefan modeling of slowing-down effects in mixed gas permeation across porous membranes. J. Membr. Sci. 383:289–300
    [Google Scholar]
  128. 128.  Krishna R 2014. The Maxwell–Stefan description of mixture diffusion in nanoporous crystalline materials. Micropor. Mesopor. Mater. 185:30–50
    [Google Scholar]
  129. 129.  Krishna R 2015. Uphill diffusion in multicomponent mixtures. Chem. Soc. Rev. 44:2812–36
    [Google Scholar]
  130. 130.  Krishna R 2016. Tracing the origins of transient overshoots for binary mixture diffusion in microporous crystalline materials. Phys. Chem. Chem. Phys. 18:15482–95
    [Google Scholar]
  131. 131.  Furmaniak S, Koter S, Terzyk AP, Gauden PA, Kowalczykc P, Rychlickia G 2015. New insights into the ideal adsorbed solution theory. Phys. Chem. Chem. Phys. 17:7232–47
    [Google Scholar]
  132. 132.  Kapteijn F, Moulijn JA, Krishna R 2000. The generalized Maxwell-Stefan model for diffusion in zeolites: sorbate molecules with different saturation loadings. Chem. Eng. Sci. 55:2923–30
    [Google Scholar]
  133. 133.  Krishna R, Paschek D 2000. Separation of hydrocarbon mixtures using zeolite membranes: a modelling approach combining molecular simulations with the Maxwell–Stefan theory. Sep. Purif. Technol. 21:111–36
    [Google Scholar]
  134. 134.  Brandani S, Jama M, Ruthven DM 2000. Counter diffusion of p-xylene/benzene and p-xylene/o-xylene in silicalite studied by the zero-length column technique. Ind. Eng. Chem. Res. 39:821–28
    [Google Scholar]
  135. 135.  Hufton JR, Danner RP 1993. Chromatographic study transport of alkanes in silicalite: properties. AIChE J 39:6962–74
    [Google Scholar]
  136. 136.  Heink W, Karger J, Pfeifer H, Datema KP, Nowa AK 1992. High-temperature pulsed field gradient nuclear magnetic resonance self-diffusion measurements of n-alkanes in MFI-type zeolites. J. Chem. Soc. Faraday Trans. 88:233505–9
    [Google Scholar]
  137. 137.  Newsome DA, Sholl DS 2006. Molecular dynamics simulations of mass transfer resistance in grain boundaries of twinned zeolite membranes. J. Phys. Chem. B. 110:22681–89
    [Google Scholar]
  138. 138.  Richter H, Voß H, Voigt I, Diefenbacher A, Schuch G et al. 2010. High-flux ZSM-5 membranes with an additional non-zeolite pore system by alcohol addition to the synthesis batch and their evaluation in the 1-butene/i-butene separation. Sep. Purif. Technol. 72:388–94
    [Google Scholar]
  139. 139.  Lima FL, Daoutidis P, Tsapatsis M, Marano JJ 2012. Modeling and optimization of membrane reactors for carbon capture in integrated gasification combined cycle units. Ind. Eng. Chem. Res. 51:5480–89
    [Google Scholar]
  140. 140.  Choi J, Tsapatsis M 2010. MCM-22/silica selective flake nanocomposite membranes for hydrogen separations. J. Am. Chem. Soc. 132:448–49
    [Google Scholar]
  141. 141.  Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong HK 2012. Current status of metal-organic framework membranes for gas separations: promises and challenges. Ind. Eng. Chem. Res. 51:2179–99
    [Google Scholar]
  142. 142.  Zhang C, Koros WJ 2015. Zeolitic imidazolate framework-enabled membranes: challenges and opportunities. J. Phys. Chem. Lett. 6:3841–49
    [Google Scholar]
  143. 143.  Venna SR, Carreon MA 2015. Metal organic framework membranes for carbon dioxide separation. Chem. Eng. Sci. 124:3–19
    [Google Scholar]
  144. 144.  Yu J, Xie LH, Li JR, Ma Y, Seminario JM, Balbuena PB 2017. CO2 capture and separations using MOFs: computational and experimental studies. Chem. Rev. 117:9674–754
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070317-124605
Loading
/content/journals/10.1146/annurev-matsci-070317-124605
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error