1932

Abstract

In this review, we summarize recent advances in nanoscale electrochemistry, including the use of nanoparticles, carbon nanomaterials, and nanowires. Exciting developments are reported for nanoscale redox cycling devices, which can chemically amplify signal readout. We also discuss promising high-frequency techniques such as nanocapacitive CMOS sensor arrays or heterodyning. In addition, we review electrochemical microreactors for use in (drug) synthesis, biocatalysis, water treatment, or to electrochemically degrade urea for use in a portable artificial kidney. Electrochemical microreactors are also used in combination with mass spectrometry, e.g., to study the mimicry of drug metabolism or to allow electrochemical protein digestion. The review concludes with an outlook on future perspectives in both nanoscale electrochemical sensing and electrochemical microreactors. For sensors, we see a future in wearables and the Internet of Things. In microreactors, a future goal is to monitor the electrochemical conversions more precisely or ultimately in situ by combining other spectroscopic techniques.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125642
2018-06-12
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-125642.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125642&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Wang J 2002. Glucose biosensors: 40 years of advances and challenges. Sensors Update 10:1107–19
    [Google Scholar]
  2. 2.  Merriman B, Torrent I, Rothberg JM 2012. Progress in ion torrent semiconductor chip based sequencing. Electrophoresis 33:233397–417
    [Google Scholar]
  3. 3.  Lemay S, White H 2016. Electrochemistry at the nanoscale: tackling old questions, posing new ones. Acc. Chem. Res. 49:112371
    [Google Scholar]
  4. 4.  Luo X, Morrin A, Killard AJ, Smyth MR 2006. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:4319–26
    [Google Scholar]
  5. 5.  Kleijn SEF, Lai SCS, Koper MTM, Unwin PR 2014. Electrochemistry of nanoparticles. Angew. Chem. Int. Ed. 53:143558–86
    [Google Scholar]
  6. 6.  Chen S, Yuan R, Chai Y, Hu F 2013. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim. Acta 180:1–215–32
    [Google Scholar]
  7. 7.  Koper MTM 2011. Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3:52054
    [Google Scholar]
  8. 8.  Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I 2003. “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299:56141877–81
    [Google Scholar]
  9. 9.  Yehezkeli O, Tel-Vered R, Raichlin S, Willner I 2011. Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano 5:32385–91
    [Google Scholar]
  10. 10.  Drescher D, Giesen C, Traub H, Panne U, Kneipp J, Jakubowski N 2012. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal. Chem. 84:229684–88
    [Google Scholar]
  11. 11.  Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ 2008. Biological applications of gold nanoparticles. Chem. Soc. Rev. 37:91909–30
    [Google Scholar]
  12. 12.  Dequaire M, Degrand C, Limoges B 2000. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal. Chem. 72:225521–28
    [Google Scholar]
  13. 13.  Ruan YF, Zhang N, Zhu YC, Zhao WW, Xu JJ, Chen HY 2017. Photoelectrochemical bioanalysis platform of gold nanoparticles equipped perovskite Bi4NbO8Cl. Anal. Chem. 89:157869–75
    [Google Scholar]
  14. 14.  Pang X, Bian H, Su M, Ren Y, Qi J et al. 2017. Photoelectrochemical cytosensing of RAW264.7 macrophage cells based on a TiO2 nanoneedls@MoO3 array. Anal. Chem. 89:157950–57
    [Google Scholar]
  15. 15.  Davenport M 2015. Twists and shouts: a nanotube story. Chem. Eng. News 93:2310–15
    [Google Scholar]
  16. 16.  Wang J, Musameh M 2003. Carbon nanotube/Teflon composite electrochemical sensors and biosensors. Anal. Chem. 75:92075–79
    [Google Scholar]
  17. 17.  Saleh Ahammad AJ, Lee JJ, Rahman MA 2009. Electrochemical sensors based on carbon nanotubes. Sensors 9:42289–319
    [Google Scholar]
  18. 18.  Yang W, Ratinac KR, Ringer SR, Thordarson P, Gooding JJ, Braet F 2010. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene?. Angew. Chem. Int. Ed. 49:122114–38
    [Google Scholar]
  19. 19.  Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y 2010. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:101027–36
    [Google Scholar]
  20. 20.  Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL 2010. Graphene for electrochemical sensing and biosensing. Trends Anal. Chem. 29:9954–65
    [Google Scholar]
  21. 21.  Chen D, Feng H, Li J 2012. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112:116027–53
    [Google Scholar]
  22. 22.  Odijk M, Olthuis W, Dam VAT, van den Berg A 2008. Simulation of redox-cycling phenomena at interdigitated array (IDA) electrodes: amplification and selectivity. Electroanalysis 20:5463–68
    [Google Scholar]
  23. 23.  Straver MG, Odijk M, Olthuis W, van den Berg A 2011. Simple method to fabricate electrochemical sensor systems with predictable high-redox cycling amplification. Lab Chip 12:81548
    [Google Scholar]
  24. 24.  Zevenbergen MAG, Krapf D, Zuiddam MR, Lemay SG 2007. Mesoscopic concentration fluctuations in a fluidic nanocavity detected by redox cycling. Nano Lett 7:2384–88
    [Google Scholar]
  25. 25.  Mathwig K, Albrecht T, Goluch ED, Rassaei L 2015. Challenges of biomolecular detection at the nanoscale: nanopores and microelectrodes. Anal. Chem. 87:115470–75
    [Google Scholar]
  26. 26.  Bard AJ, Fan FRF, Kwak J, Lev O 1989. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61:2132–38
    [Google Scholar]
  27. 27.  Kwak J, Bard AJ 1989. Scanning electrochemical microscopy. Theory of the feedback mode. Anal. Chem. 61:111221–27
    [Google Scholar]
  28. 28.  Momotenko D, Qiao L, Cortés-Salazar F, Lesch A, Wittstock G, Girault HH 2012. Electrochemical push-pull scanner with mass spectrometry detection. Anal. Chem. 84:6630–37
    [Google Scholar]
  29. 29.  van Megen MJJ, Odijk M, Wiedemair J, Olthuis W, van den Berg A 2012. Differential cyclic voltammetry for selective and amplified detection. J. Electroanal. Chem. 681:6–10
    [Google Scholar]
  30. 30.  Wolfrum B, Kätelhön E, Yakushenko A, Krause KJ, Adly N et al. 2016. Nanoscale electrochemical sensor arrays: redox cycling amplification in duel-electrode systems. Acc. Chem. Res. 49:92031–40
    [Google Scholar]
  31. 31.  Adly NY, Bachmann B, Krause KJ, Offenhäusser A, Wolfrum B, Yakushenko A 2017. Three-dimensional inkjet-printed redox cycling sensor. RSC Adv 7:95473–79
    [Google Scholar]
  32. 32.  Adly N, Feng L, Krause KJ, Mayer D, Yakushenko A et al. 2017. Flexible microgap electrodes by direct inkjet printing for biosensing application. Adv. Biosyst. 1:31600016
    [Google Scholar]
  33. 33.  Zafarani HR, Mathwig K, Sudhölter EJR, Rassaei L 2017. Electrochemical amplification in side-by-side attoliter nanogap transducers. ACS Sens 2:6724–28
    [Google Scholar]
  34. 34.  Steentjes T, Sarkar S, Jonkheijm P, Lemay SG, Huskens J 2017. Electron transfer mediated by surface-tethered redox groups in nanofluidic devices. Small 13:81603268
    [Google Scholar]
  35. 35.  Ma C, Zaino LP 3rd, Bohn PW 2015. Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes. Chem. Sci. 6:53173–79
    [Google Scholar]
  36. 36.  Ma C, Xu W, Wichert WRA, Bohn PW 2016. Ion accumulation and migration effects on redox cycling in nanopore electrode arrays at low ionic strength. ACS Nano 10:33658–64
    [Google Scholar]
  37. 37.  Fu K, Han D, Ma C, Bohn PW 2017. Ion selective redox cycling in zero-dimensional nanopore electrode arrays at low ionic strength. Nanoscale 9:165164–71
    [Google Scholar]
  38. 38.  Han D, Crouch GM, Fu K, Zaino LP 3rd, Bohn PW 2017. Single-molecule spectroelectrochemical cross-correlation during redox cycling in recessed dual ring electrode zero-mode waveguides. Chem. Sci. 8:85345–55
    [Google Scholar]
  39. 39.  Bergveld P 1970. Short communications: development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1:70–71
    [Google Scholar]
  40. 40.  Bergveld P 2003. Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B 88:11–20
    [Google Scholar]
  41. 41.  Chen S, Bomer JG, van der Wiel WG, Carlen ET, van den Berg A 2009. Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication. ACS Nano 3:113485–92
    [Google Scholar]
  42. 42.  Chen S, Bomer JG, Carlen ET, van den Berg A 2011. Al2O3/silicon nanoISFET with near ideal Nernstian response. Nano Lett 11:62334–41
    [Google Scholar]
  43. 43.  De A, van Nieuwkasteele J, Carlen ET, van den Berg A 2013. Integrated label-free silicon nanowire sensor arrays for (bio)chemical analysis. Analyst 138:113221
    [Google Scholar]
  44. 44.  Chen S, Van Den Berg A, Carlen ET 2015. Sensitivity and detection limit analysis of silicon nanowire bio(chemical) sensors. Sens. Actuators B 209:486–89
    [Google Scholar]
  45. 45.  Zhang GJ, Ning Y 2012. Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal. Chim. Acta 749:1–15
    [Google Scholar]
  46. 46.  Widdershoven F, Van Steenwinckel D, Überfeld J, Merelle T, Suy H et al. 2010. CMOS biosensor platform Presented at IEEE Int Electron. Devices Meet San Francisco.:
  47. 47.  Laborde C, Pittino F, Verhoeven HA, Lemay SG, Selmi L et al. 2015. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat. Nanotechnol. 10:9791–95
    [Google Scholar]
  48. 48.  Lemay SG, Laborde C, Renault C, Cossettini A, Selmi L, Widdershoven FP 2016. High-frequency nanocapacitor arrays: concept, recent developments, and outlook. Acc. Chem. Res. 49:102355–62
    [Google Scholar]
  49. 49.  Kulkarni GS, Zang W, Zhong Z 2016. Nanoelectronic heterodyne sensor: a new electronic sensing paradigm. Acc. Chem. Res. 49:112578–86
    [Google Scholar]
  50. 50.  Kulkarni GS, Zhong Z 2012. Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor. Nano Lett 12:2719–23
    [Google Scholar]
  51. 51.  Kulkarni GS, Reddy K, Zhong Z, Fan X 2014. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat. Commun. 5:4376
    [Google Scholar]
  52. 52.  Kaim W, Fiedler J 2009. Spectroelectrochemistry: the best of two worlds. Chem. Soc. Rev. 38:123373–82
    [Google Scholar]
  53. 53.  Ngoc LLT, Jin M, Wiedemair J, van den Berg A, Carlen ET et al. 2013. Large area metal nanowire arrays with tunable sub-20 nm nanogaps. ACS Nano5223–34
  54. 54.  Yuan T, Ngoc LLT, van Nieuwkasteele J, Odijk M, van den Berg A et al. 2015. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface. Anal. Chem. 87:52588–92
    [Google Scholar]
  55. 55.  van den Beld WTE, Odijk M, Vervuurt RHJ, Weber J-W, Bol AA et al. 2017. In-situ Raman spectroscopy to elucidate the influence of adsorption in graphene electrochemistry. Sci. Rep. 7:45080
    [Google Scholar]
  56. 56.  Izquierdo J, Mizaikoff B, Kranz C 2016. Surface-enhanced infrared spectroscopy on boron-doped diamond modified with gold nanoparticles for spectroelectrochemical analysis. Phys. Status Solidi Appl. Mater. Sci. 213:82056–62
    [Google Scholar]
  57. 57.  van den Brink FTG, Olthuis W, van den Berg A, Odijk M 2015. Miniaturization of electrochemical cells for mass spectrometry. Trends Anal. Chem. 70:40–49
    [Google Scholar]
  58. 58.  Renault C, Roche J, Ciumag MR, Tzedakis T, Colin S et al. 2012. Design and optimization of electrochemical microreactors for continuous electrosynthesis. J. Appl. Electrochem. 42:9667–77
    [Google Scholar]
  59. 59.  Watts K, Gattrell W, Wirth T 2011. A practical microreactor for electrochemistry in flow. Beilstein J. Org. Chem. 7:1108–14
    [Google Scholar]
  60. 60.  Nouri-Nigjeh E, Permentier HP, Bischoff R, Bruins AP 2011. Electrochemical oxidation by square-wave potential pulses in the imitation of oxidative drug metabolism. Anal. Chem. 83:145519–25
    [Google Scholar]
  61. 61.  Yoshida JI, Kim H, Nagaki A 2011. Green and sustainable chemical synthesis using flow microreactors. ChemSusChem 4:3331–40
    [Google Scholar]
  62. 62.  van den Brink FTG, Buter L, Odijk M, Olthuis W, Karst U et al. 2015. Mass spectrometric detection of short-lived drug metabolites generated in an electrochemical microfluidic chip. Anal. Chem. 87:31527–35
    [Google Scholar]
  63. 63.  Yoshida JI, Nagaki A, Yamada T 2008. Flash chemistry: fast chemical synthesis by using microreactors. Chem. Eur. J. 14:257450–59
    [Google Scholar]
  64. 64.  Atobe M, Tateno H, Matsumura Y 2017. Applications of flow microreactors in electrosynthetic processes. Chem. Rev. In press. https://doi.org/10.1021/acs.chemrev.7b00353
    [Crossref]
  65. 65.  Gütz C, Stenglein A, Waldvogel SR 2017. Highly modular flow cell for electroorganic synthesis. Org. Process Res. Dev. 21:5771–78
    [Google Scholar]
  66. 66.  Watts K, Baker A, Wirth T 2015. Electrochemical synthesis in microreactors. J. Flow Chem. 4:12–11
    [Google Scholar]
  67. 67.  Atobe M 2017. Organic electrosynthesis in flow microreactor. Curr. Opin. Electrochem. 2:11–6
    [Google Scholar]
  68. 68.  Tateno H, Matsumura Y, Nakabayashi K, Senboku H, Atobe M 2015. Development of a novel electrochemical carboxylation system using a microreactor. RSC Adv 5:11998721–23
    [Google Scholar]
  69. 69.  Arai T, Tateno H, Nakabayashi K, Kashiwagi T, Atobe M 2015. An anodic aromatic C,C cross-coupling reaction using parallel laminar flow mode in a flow microreactor. Chem. Commun. 1:234891–94
    [Google Scholar]
  70. 70.  Sumi T, Saitoh T, Natsui K, Yamamoto T, Atobe M et al. 2012. Anodic oxidation on a boron-doped diamond electrode mediated by methoxy radicals. Angew. Chem. Int. Ed. 51:225443–46
    [Google Scholar]
  71. 71.  Arai K, Watts K, Wirth T 2014. Difluoro- and trifluoromethylation of electron-deficient alkenes in an electrochemical microreactor. ChemistryOpen 3:123–28
    [Google Scholar]
  72. 72.  Hollmann F, Arends IWCE, Buehler K 2010. Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. ChemCatChem 2:7762–82
    [Google Scholar]
  73. 73.  Rodríguez-Hinestroza RA, López C, López-Santín J, Kane C, Dolors Benaiges M, Tzedakis T 2017. HLADH-catalyzed synthesis of β-amino acids, assisted by continuous electrochemical regeneration of NAD+ in a filter press microreactor. Chem. Eng. Sci. 158:196–207
    [Google Scholar]
  74. 74.  Ruinatscha R, Buehler K, Schmid A 2014. Development of a high performance electrochemical cofactor regeneration module and its application to the continuous reduction of FAD. J. Mol. Catal. B Enzym. 103:100–5
    [Google Scholar]
  75. 75.  Srikanth S, Maesen M, Dominguez-Benetton X, Vanbroekhoven K, Pant D 2014. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Bioresour. Technol. 165:350–54
    [Google Scholar]
  76. 76.  Bardea A, Katz E, Bückmann AF, Willner I 1997. NAD+-dependent enzyme electrodes: electrical contact of cofactor-dependent enzymes and electrodes. J. Am. Chem. Soc. 119:399114–19
    [Google Scholar]
  77. 77.  Anglada A, Urtiaga A, Ortiz I 2009. Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J. Chem. Technol. Biotechnol. 84:121747–55
    [Google Scholar]
  78. 78.  Scialdone O, Corrado E, Galia A, Sirés I 2014. Electrochemical processes in macro and microfluidic cells for the abatement of chloroacetic acid from water. Electrochim. Acta 132:15–24
    [Google Scholar]
  79. 79.  Brillas E, Sirés I 2015. Electrochemical removal of pharmaceuticals from water streams: reactivity elucidation by mass spectrometry. Trends Anal. Chem. 70:112–21
    [Google Scholar]
  80. 80.  Urbańczyk E, Sowa M, Simka W 2016. Urea removal from aqueous solutions—a review. J. Appl. Electrochem. 46:101011–29
    [Google Scholar]
  81. 81.  Wester M, Simonis F, Lachkar N, Wodzig WK, Meuwissen FJ et al. 2014. Removal of urea in a wearable dialysis device: a reappraisal of electro-oxidation. Artif. Organs 38:12998–1006
    [Google Scholar]
  82. 82.  Cataldo Hernández M, Russo N, Panizza M, Spinelli P, Fino D 2014. Electrochemical oxidation of urea in aqueous solutions using a boron-doped thin-film diamond electrode. Diam. Relat. Mater. 44:109–16
    [Google Scholar]
  83. 83.  Bruins AP 2015. An overview of electrochemistry combined with mass spectrometry. Trends Anal. Chem. 70:14–19
    [Google Scholar]
  84. 84.  Bussy U, Boisseau R, Thobie-Gautier C, Boujtita M 2015. Electrochemistry-mass spectrometry to study reactive drug metabolites and CYP450 simulations. Trends Anal. Chem. 70:67–73
    [Google Scholar]
  85. 85.  Büter L, Vogel M, Karst U 2015. Adduct formation of electrochemically generated reactive intermediates with biomolecules. Trends Anal. Chem. 70:74–91
    [Google Scholar]
  86. 86.  Roeser J, Bischoff R, Bruins AP, Permentier HP 2010. Oxidative protein labeling in mass-spectrometry-based proteomics. Anal. Bioanal. Chem. 397:83441–55
    [Google Scholar]
  87. 87.  Roeser J, Alting NFA, Permentier HP, Bruins AP, Bischoff RPH 2013. Chemical labeling of electrochemically cleaved peptides. Rapid Commun. Mass Spectrom. 27:4546–52
    [Google Scholar]
  88. 88.  Vasiliadou R, Esfahani MMN, Brown NJ, Welham KJ 2016. A disposable microfluidic device with a screen printed electrode for mimicking phase II metabolism. Sensors 16:91418
    [Google Scholar]
  89. 89.  van den Brink FTG, Wigger T, Ma L, Odijk M, Olthuis W et al. 2016. Oxidation and adduct formation of xenobiotics in a microfluidic electrochemical cell with boron doped diamond electrodes and an integrated passive gradient rotation mixer. Lab Chip 16:203990–4001
    [Google Scholar]
  90. 90.  Van Den Brink FTG, Zhang T, Ma L, Bomer J, Odijk M et al. 2016. Electrochemical protein cleavage in a microfluidic cell with integrated boron doped diamond electrodes. Anal. Chem. 88:189190–98
    [Google Scholar]
  91. 91.  Permentier HP, Jurva U, Barroso BBB, Bruins AP 2003. Electrochemical oxidation and cleavage of peptides analyzed with on-line mass spectrometric detection. Rapid Commun. Mass Spectrom. 17:141585–92
    [Google Scholar]
  92. 92.  van den Brink FTG, Zhang T, Ma L, Odijk M, Olthuis W et al. 2017. Electrochemical protein cleavage in a microfluidic cell for proteomics studies. Proc. Technol. 27:62–64
    [Google Scholar]
  93. 93.  Windmiller JR, Wang J 2013. Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25:129–46
    [Google Scholar]
  94. 94.  Kissinger PT 2005. Biosensors: a perspective. Biosens. Bioelectron. 20:122512–16
    [Google Scholar]
  95. 95.  Lu J, Hua X, Long Y-T 2017. Recent advances in real-time and in situ analysis of an electrode-electrolyte interface by mass spectrometry. Analyst 142:5691–99
    [Google Scholar]
  96. 96.  Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF et al. 2016. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 352:628161–67
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125642
Loading
/content/journals/10.1146/annurev-anchem-061417-125642
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error