1932

Abstract

Advances in next-generation sequencing technology along with decreasing costs now allow the microbial population, or microbiome, of a location to be determined relatively quickly. This research reveals that microbial communities are more diverse and complex than ever imagined. New and specialized instrumentation is required to investigate, with high spatial and temporal resolution, the dynamic biochemical environment that is created by microbes, which allows them to exist in every corner of the Earth. This review describes how electrochemical probes and techniques are being used and optimized to learn about microbial communities. Described approaches include voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy, separation techniques coupled with electrochemical detection, and arrays of complementary metal-oxide-semiconductor circuits. Microbial communities also interact with and influence their surroundings; therefore, the review also includes a discussion of how electrochemical probes optimized for microbial analysis are utilized in healthcare diagnostics and environmental monitoring applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125627
2018-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-125627.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125627&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Gadd GM 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:Pt. 3609–43
    [Google Scholar]
  2. 2.  van de Vossenberg J, Woebken D, Maalcke WJ, Wessels HJCT, Dutilh BE et al. 2013. The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environ. Microbiol. 15:51275–89
    [Google Scholar]
  3. 3.  Thodey K, Galanie S, Smolke CD 2014. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat. Chem. Biol. 10:10837–44
    [Google Scholar]
  4. 4.  Rollin JA, Tam TK, Zhang YHP 2013. New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green Chem 15:71708–19
    [Google Scholar]
  5. 5.  Munita JM, Arias CA 2016. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4:2 https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
    [Crossref] [Google Scholar]
  6. 6.  Stoodley P, Debeer D, Lewandowski Z 1994. Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60:82711–16
    [Google Scholar]
  7. 7.  Abadian PN, Tandogan N, Jamieson JJ, Goluch ED 2014. Using surface plasmon resonance imaging to study bacterial biofilms. Biomicrofluidics 8:2021804
    [Google Scholar]
  8. 8.  Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S 2004. Bacterial persistence as a phenotypic switch. Science 305:56901622–25
    [Google Scholar]
  9. 9.  Tjalsma H, Antelmann H, Jongbloed JDH, Braun PG, Darmon E et al. 2004. Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol. Mol. Biol. Rev. 68:2207–33
    [Google Scholar]
  10. 10.  Ilinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG 2017. Secretome of intestinal Bacilli: a natural guard against pathologies. Front. Microbiol. 8:1666
    [Google Scholar]
  11. 11.  Behrends V, Bell TJ, Liebeke M, Cordes-Blauert A, Ashraf SN et al. 2013. Metabolite profiling to characterize disease-related bacteria: gluconate excretion by Pseudomonas aeruginosa mutants and clinical isolates from cystic fibrosis patients. J. Biol. Chem. 288:2115098–109
    [Google Scholar]
  12. 12.  Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N et al. 2016. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1:16203
    [Google Scholar]
  13. 13.  Rutherford ST, Bassler BL 2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2:11a012427
    [Google Scholar]
  14. 14.  Papenfort K, Bassler BL 2016. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14:9576–88
    [Google Scholar]
  15. 15.  Darch SE, Ibberson CB, Whiteley M 2017. Evolution of bacterial “frenemies. .” MBio 8:3e00675–17
    [Google Scholar]
  16. 16.  Michie KL, Cornforth DM, Whiteley M 2016. Bacterial tweets and podcasts #signaling#eavesdropping#microbialfightclub. Mol. Biochem. Parasitol. 208:141–48
    [Google Scholar]
  17. 17.  Dinan TG, Stilling RM, Stanton C, Cryan JF 2015. Collective unconscious: how gut microbes shape human behavior. J. Psychiatr. Res. 63:1–9
    [Google Scholar]
  18. 18.  O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF 2015. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277:32–48
    [Google Scholar]
  19. 19.  Price-Whelan A, Dietrich LEP, Newman DK 2007. Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J. Bacteriol. 189:176372–81
    [Google Scholar]
  20. 20.  Das T, Ibugo AI, Klare W, Manefield M 2016. Role of pyocyanin and extracellular DNA in facilitating Pseudomonas aeruginosa biofilm formation. Microbial Biofilms—Importance and Applications, ed. D Dhanasekaran, N Thajuddin London: InTech https:/doi.org/10.5772.63497
    [Crossref] [Google Scholar]
  21. 21.  Schlafer S, Meyer RL 2017. Confocal microscopy imaging of the biofilm matrix. J. Microbiol. Methods 138:50–59
    [Google Scholar]
  22. 22.  Masyuko RN, Lanni EJ, Driscoll CM, Shrout JD, Sweedler JV, Bohn PW 2014. Spatial organization of Pseudomonas aeruginosa biofilms probed by combined matrix-assisted laser desorption ionization mass spectrometry and confocal Raman microscopy. Analyst 139:225700–8
    [Google Scholar]
  23. 23.  Davis AN, Travis AR, Miller DR, Cliffel DE 2017. Multianalyte physiological microanalytical devices. Annu. Rev. Anal. Chem. 10:93–111
    [Google Scholar]
  24. 24.  Zhao C, Thuo MM, Liu X 2013. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers. Sci. Technol. Adv. Mater. 14:5054402
    [Google Scholar]
  25. 25.  Todar K 2012. Bacterial Protein Toxins http://textbookofbacteriology.net/proteintoxins.html
  26. 26.  Hong KL, Sooter LJ 2015. Single-stranded DNA aptamers against pathogens and toxins: identification and biosensing applications. Biomed. Res. Int. 2015:419318
    [Google Scholar]
  27. 27.  Miao P 2013. Electrochemical sensing strategies for the detection of endotoxin: a review. RSC Adv 3:259606–17
    [Google Scholar]
  28. 28.  Zhou J, Loftus AL, Mulley G, Jenkins ATA 2010. A thin film detection/response system for pathogenic bacteria. J. Am. Chem. Soc. 132:186566–70
    [Google Scholar]
  29. 29.  Al-Fattani MA, Douglas LJ 2006. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J. Med. Microbiol. 55:Pt. 8999–1008
    [Google Scholar]
  30. 30.  Mann EE, Wozniak DJ 2012. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev. 36:4893–916
    [Google Scholar]
  31. 31.  Harmsen M, Lappann M, Knøchel S, Molin S 2010. Role of extracellular DNA during biofilm formation by Listeria monocytogenes. . Appl. Environ. Microbiol. 76:72271–79
    [Google Scholar]
  32. 32.  Izano EA, Amarante MA, Kher WB, Kaplan JB 2008. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl. Environ. Microbiol. 74:2470–76
    [Google Scholar]
  33. 33.  Izano EA, Sadovskaya I, Wang H, Vinogradov E, Ragunath C et al. 2008. Poly-N-acetylglucosamine mediates biofilm formation and detergent resistance in Aggregatibacter actinomycetemcomitans. . Microb. Pathog. 44:152–60
    [Google Scholar]
  34. 34.  Abadian PN, Goluch ED 2014. Surface plasmon resonance imaging (SPRi) for multiplexed evaluation of bacterial adhesion onto surface coatings. Anal. Methods 7:1115–22
    [Google Scholar]
  35. 35.  Aninwene GE2nd, Abadian PN, Ravi V, Taylor EN, Hall DM et al. 2015. Lubricin: a novel means to decrease bacterial adhesion and proliferation. J. Biomed. Mater. Res. A 103:2451–62
    [Google Scholar]
  36. 36.  Gozzi K, Ching C, Paruthiyil S, Zhao Y, Godoy-Carter V, Chai Y 2017. Bacillus subtilis utilizes the DNA damage response to manage multicellular development. NPJ Biofilms Microbiomes 3:8
    [Google Scholar]
  37. 37.  Abadian PN, Kelley CP, Goluch ED 2014. Cellular analysis and detection using surface plasmon resonance techniques. Anal. Chem. 86:62799–812
    [Google Scholar]
  38. 38.  Boles BR, Horswill AR 2011. Staphylococcal biofilm disassembly. Trends Microbiol 19:9449–55
    [Google Scholar]
  39. 39.  Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR 2010. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol. Ecol. 72:11–21
    [Google Scholar]
  40. 40.  Macdonald JR, Johnson WB 2005. Fundamentals of impedance spectroscopy. Impedance Spectroscopy: Theory, Experiment, and Applications E Barsoukov, JR Macdonald 1–26 Hoboken, NJ: John Wiley & Sons, 2nd ed..
  41. 41.  Duan YY, Clark GM, Cowan RSC 2001. Factors determining and limiting the impedance behavior of implanted bio-electrodes. Smart Structures Devices DK Sood, RA Lawes, VV Varadan 498–509
  42. 42.  Chang B-Y, Park S-M 2010. Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3:207–29
    [Google Scholar]
  43. 43.  Randviir EP, Banks CE 2013. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods. 5:51098–115
    [Google Scholar]
  44. 44.  Yang L, Li Y, Erf GF 2004. Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. Anal. Chem. 76:41107–13
    [Google Scholar]
  45. 45.  Mannoor MS, Zhang S, Link AJ, McAlpine MC 2010. Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. PNAS 107:4519207–12
    [Google Scholar]
  46. 46.  Ciani I, Schulze H, Corrigan DK, Henihan G, Giraud G et al. 2012. Development of immunosensors for direct detection of three wound infection biomarkers at point of care using electrochemical impedance spectroscopy. Biosens. Bioelectron. 31:1413–18
    [Google Scholar]
  47. 47.  Cho M, Chun L, Lin M, Choe W, Nam J, Lee Y 2012. Sensitive electrochemical sensor for detection of lipopolysaccharide on metal complex immobilized gold electrode. Sens. Actuators B 174:490–94
    [Google Scholar]
  48. 48.  Mayall RM, Renaud-Young M, Chan NWC, Birss VI 2017. An electrochemical lipopolysaccharide sensor based on an immobilized Toll-Like Receptor-4. Biosens. Bioelectron. 87:794–801
    [Google Scholar]
  49. 49.  Phair J, Newton L, McCormac C, Cardosi MF, Leslie R, Davis J 2011. A disposable sensor for point of care wound pH monitoring. Analyst 136:224692–95
    [Google Scholar]
  50. 50.  Nagoba BS, Suryawanshi NM, Wadher B, Selkar S 2015. Acidic environment and wound healing: a review. Wounds 27:15–11
    [Google Scholar]
  51. 51.  Lafitte VGH, Wang W, Yashina AS, Lawrence NS 2008. Anthraquinone-ferrocene film electrodes: utility in pH and oxygen sensing. Electrochem. Commun. 10:121831–34
    [Google Scholar]
  52. 52.  Lawrence NS, Robinson KL 2007. Molecular anchoring of anthracene-based copolymers onto carbon nanotubes: enhanced pH sensing. Talanta 74:3365–69
    [Google Scholar]
  53. 53.  Xiong L, Batchelor-McAuley C, Compton RG 2011. Calibrationless pH sensors based on nitrosophenyl and ferrocenyl co-modified screen printed electrodes. Sens. Actuators B 159:1251–55
    [Google Scholar]
  54. 54.  Glennon JD, Woulfe MR, Senior AT, NiChoileain N 1989. Analysis of siderophores and synthetic hydroxamic acids by high-performance liquid chromatography with amperometric detection. Anal. Chem. 61:141474–78
    [Google Scholar]
  55. 55.  Elizalde-González MP, Mattusch J, Wennrich R 1998. Stability and determination of aflatoxins by high-performance liquid chromatography with amperometric detection. J. Chromatogr. A. 828:1–2439–44
    [Google Scholar]
  56. 56.  Scott DE, Grigsby RJ, Lunte SM 2013. Microdialysis sampling coupled to microchip electrophoresis with integrated amperometric detection on an all-glass substrate. ChemPhysChem 14:102288–94
    [Google Scholar]
  57. 57.  Gunasekara DB, Hulvey MK, Lunte SM 2011. In-channel amperometric detection for microchip electrophoresis using a wireless isolated potentiostat. Electrophoresis 32:8832–37
    [Google Scholar]
  58. 58.  Gunasekara DB, Siegel JM, Caruso G, Hulvey MK, Lunte SM 2014. Microchip electrophoresis with amperometric detection method for profiling cellular nitrosative stress markers. Analyst 139:133265–73
    [Google Scholar]
  59. 59.  Lucca BG, Lunte SM, Coltro WKT, Ferreira VS 2014. Separation of natural antioxidants using PDMS electrophoresis microchips coupled with amperometric detection and reverse polarity. Electrophoresis 35:233363–70
    [Google Scholar]
  60. 60.  Scott DE, Willis SD, Gabbert S, Johnson D, Naylor E et al. 2015. Development of an on-animal separation-based sensor for monitoring drug metabolism in freely roaming sheep. Analyst 140:113820–29
    [Google Scholar]
  61. 61.  Lyte M 2010. The microbial organ in the gut as a driver of homeostasis and disease. Med. Hypotheses 74:4634–38
    [Google Scholar]
  62. 62.  Alatraktchi FA, Johansen HK, Molin S, Svendsen WE 2016. Electrochemical sensing of biomarker for diagnostics of bacteria-specific infections. Nanomedicine 11:162185–95
    [Google Scholar]
  63. 63.  Sharp D, Gladstone P, Smith RB, Forsythe S, Davis J 2010. Approaching intelligent infection diagnostics: carbon fibre sensor for electrochemical pyocyanin detection. Bioelectrochemistry 77:2114–19
    [Google Scholar]
  64. 64.  Buzid A, Shang F, Reen FJ, Muimhneacháin , Clarke SL et al. 2016. Molecular signature of Pseudomonas aeruginosa with simultaneous nanomolar detection of quorum sensing signaling molecules at a boron-doped diamond electrode. Sci. Rep. 6:30001
    [Google Scholar]
  65. 65.  Regel A, Lunte S 2013. Integration of a graphite/poly(methyl-methacrylate) composite electrode into a poly(methylmethacrylate) substrate for electrochemical detection in microchips. Electrophoresis 34:142101–6
    [Google Scholar]
  66. 66.  Matuschek L, Göbel G, Lisdat F 2017. Electrochemical detection of serotonin in the presence of 5-hydroxyindoleacetic acid and ascorbic acid by use of 3D ITO electrodes. Electrochem. Commun. 81:Suppl. C145–49
    [Google Scholar]
  67. 67.  Abbar JC, Meti MD, Nandibewoor ST 2017. Anodic voltammetric behavior of lincomycin and its electroanalytical determination in pharmaceutical dosage form and urine at gold electrode. Z. Phys. Chem. 231:51975
    [Google Scholar]
  68. 68.  Fedorchuk VA, Puchkovskaya ES, Anisimova LS, Slepchenko GB 2005. Use of voltammetry for determining antibiotics streptomycin and azitromycin. J. Anal. Chem. 60:6518–22
    [Google Scholar]
  69. 69.  Webster TA, Goluch ED 2012. Electrochemical detection of pyocyanin in nanochannels with integrated palladium hydride reference electrodes. Lab Chip 12:245195–201
    [Google Scholar]
  70. 70.  Webster TA, Sismaet HJ, Goluch ED 2013. Amperometric detection of pyocyanin in nanofluidic channels. Nano Life 3:11340011
    [Google Scholar]
  71. 71.  Sismaet HJ, Webster TA, Goluch ED 2014. Up-regulating pyocyanin production by amino acid addition for early electrochemical identification of Pseudomonas aeruginosa. . Analyst 139:174241–46
    [Google Scholar]
  72. 72.  Sismaet HJ, Pinto AJ, Goluch ED 2017. Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Biosens. Bioelectron. 97:65–69
    [Google Scholar]
  73. 73.  Webster TA, Sismaet HJ, Chan I-PJ, Goluch ED 2015. Electrochemically monitoring the antibiotic susceptibility of Pseudomonas aeruginosa biofilms. Analyst 140:217195–201
    [Google Scholar]
  74. 74.  Selim HMM, Kamal AM, Ali DMM, Hassan RYA 2017. Bioelectrochemical systems for measuring microbial cellular functions. Electroanalysis 29:61498–505
    [Google Scholar]
  75. 75.  Li S-W, Sheng G-P, Cheng Y-Y, Yu H-Q 2016. Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria. Sci. Rep. 6:39098
    [Google Scholar]
  76. 76.  Zhang T, Cui C, Chen S, Yang H, Shen P 2008. The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem. Commun. 10:2293–97
    [Google Scholar]
  77. 77.  Qiao Y, Li CM, Bao S-J, Lu Z, Hong Y 2008. Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem. Commun. 11:1290–92
    [Google Scholar]
  78. 78.  Qiao Y, Li CM, Lu Z, Ling H, Kang A, Chang MW 2009. A time-course transcriptome analysis of Escherichia coli with direct electrochemistry behavior in microbial fuel cells. Chem. Commun. 41:6183–85
    [Google Scholar]
  79. 79.  Gomez-Carretero S, Libberton B, Rhen M, Richter-Dahlfors A 2017. Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors. NPJ Biofilms Microbiomes 3:19
    [Google Scholar]
  80. 80.  Kang J, Kim T, Tak Y, Lee J-H, Yoon J 2012. Cyclic voltammetry for monitoring bacterial attachment and biofilm formation. J. Ind. Eng. Chem. 18:2800–7
    [Google Scholar]
  81. 81.  Cai C, Liu B, Mirkin MV, Frank HA, Rusling JF 2002. Scanning electrochemical microscopy of living cells. 3. Rhodobacter sphaeroides. Anal. Chem. 74:1114–19
    [Google Scholar]
  82. 82.  Hu Z, Jin J, Abruña HD, Houston PL, Hay AG et al. 2007. Spatial distributions of copper in microbial biofilms by scanning electrochemical microscopy. Environ. Sci. Technol. 41:3936–41
    [Google Scholar]
  83. 83.  Nagamine K, Matsui N, Kaya T, Yasukawa T, Shiku H et al. 2005. Amperometric detection of the bacterial metabolic regulation with a microbial array chip. Biosens. Bioelectron. 21:1145–51
    [Google Scholar]
  84. 84.  Abucayon E, Ke N, Cornut R, Patelunas A, Miller D et al. 2014. Investigating catalase activity through hydrogen peroxide decomposition by bacteria biofilms in real time using scanning electrochemical microscopy. Anal. Chem. 86:1498–505
    [Google Scholar]
  85. 85.  Connell JL, Kim J, Shear JB, Bard AJ, Whiteley M 2014. Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy. PNAS 111:5118255–60
    [Google Scholar]
  86. 86.  Kim J, Connell JL, Whiteley M, Bard AJ 2014. Development of a versatile in vitro platform for studying biological systems using micro-3D printing and scanning electrochemical microscopy. Anal. Chem. 86:2412327–33
    [Google Scholar]
  87. 87.  Webster TA, Sismaet HJ, Sattler AF, Goluch ED 2015. Improved monitoring of P. aeruginosa on agar plates. Anal. Methods 7:177150–55
    [Google Scholar]
  88. 88.  Sadik OA, Aluoch AO, Zhou A 2009. Status of biomolecular recognition using electrochemical techniques. Biosens. Bioelectron. 24:92749–65
    [Google Scholar]
  89. 89.  Thet NT, Jenkins ATA 2015. An electrochemical sensor concept for the detection of bacterial virulence factors from Staphylococcus aureus and Pseudomonas aeruginosa. . Electrochem. Commun. 59:104–8
    [Google Scholar]
  90. 90.  Wcisło M, Compagnone D, Trojanowicz M 2007. Enantioselective screen-printed amperometric biosensor for the determination of D-amino acids. Bioelectrochemistry 71:191–98
    [Google Scholar]
  91. 91.  Song S, Wang L, Li J, Fan C, Zhao J 2008. Aptamer-based biosensors. Trends Anal. Chem. 27:2108–17
    [Google Scholar]
  92. 92.  Liu J, Cao Z, Lu Y 2009. Functional nucleic acid sensors. Chem. Rev. 109:51948–98
    [Google Scholar]
  93. 93.  Arroyo-Currás N, Somerson J, Vieira PA, Ploense KL, Kippin TE, Plaxco KW 2017. Real-time measurement of small molecules directly in awake, ambulatory animals. PNAS 114:4645–50
    [Google Scholar]
  94. 94.  Ferguson BS, Hoggarth DA, Maliniak D, Ploense K, White RJ et al. 2013. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci. Transl. Med. 5:213213ra165
    [Google Scholar]
  95. 95.  Sismaet HJ, Goluch ED 2017. Electrochemical aptamer sensors for the detection of quorum sensing molecules from clinical pathogens Presented at Int. Conf. Miniaturized Sys. Chem. Life Sci., 21st, Savannah, GA
  96. 96.  Singh PS 2015. From sensors to systems: CMOS-integrated electrochemical biosensors. IEEE Access 3:249–59
    [Google Scholar]
  97. 97.  Hwang S, LaFratta CN, Agarwal V, Yu X, Walt DR, Sonkusale S 2009. CMOS microelectrode array for electrochemical lab-on-a-chip applications. IEEE Sens. J. 9:6609–15
    [Google Scholar]
  98. 98.  Rothe J, Frey O, Stettler A, Chen Y, Hierlemann A 2014. Fully integrated CMOS microsystem for electrochemical measurements on 32×32 working electrodes at 90 frames per second. Anal. Chem. 86:136425–32
    [Google Scholar]
  99. 99.  Bellin DL, Sakhtah H, Rosenstein JK, Levine PM, Thimot J et al. 2014. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nat. Commun. 5:3256
    [Google Scholar]
  100. 100.  Bellin DL, Sakhtah H, Zhang Y, Price-Whelan A, Dietrich LEP, Shepard KL 2016. Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms. Nat. Commun. 7:10535
    [Google Scholar]
  101. 101.  Wydallis JB, Feeny RM, Wilson W, Kern T, Chen T et al. 2015. Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array. Lab Chip 15:204075–82
    [Google Scholar]
  102. 102.  Feeny RM, Wydallis JB, Chen T, Tobet S, Reynolds MM, Henry CS 2015. Analysis of nitric oxide from chemical donors using CMOS platinum microelectrodes. Electroanalysis 27:51104–9
    [Google Scholar]
  103. 103.  Vallance P, Charles I 1998. Nitric oxide as an antimicrobial agent: does NO always mean NO?. Gut 42:3313–14
    [Google Scholar]
  104. 104.  Malima A, Siavoshi S, Musacchio T, Upponi J, Yilmaz C et al. 2012. Highly sensitive microscale in vivo sensor enabled by electrophoretic assembly of nanoparticles for multiple biomarker detection. Lab Chip 12:224748–54
    [Google Scholar]
  105. 105.  Duffy GF, Moore EJ 2017. Electrochemical immunosensors for food analysis: a review of recent developments. Anal. Lett. 50:11–32
    [Google Scholar]
  106. 106.  Yu HLL, Maslova A, Hsing I-M 2017. Rational design of electrochemical DNA biosensors for point-of-care applications. ChemElectroChem 4:4795–805
    [Google Scholar]
  107. 107.  Monzó J, Insua I, Fernandez-Trillo F, Rodriguez P 2015. Fundamentals, achievements and challenges in the electrochemical sensing of pathogens. Analyst 140:217116–28
    [Google Scholar]
  108. 108.  Bogomolova A 2010. Sensing of biowarfare agents. Sensors for Chemical and Biological Applications MK Ram, VR Bhethanabotla 333–51 Boca Raton, FL: CRC Press
  109. 109.  Liu Y, Matharu Z, Howland MC, Revzin A, Simonian AL 2012. Affinity and enzyme-based biosensors: recent advances and emerging applications in cell analysis and point-of-care testing. Anal. Bioanal. Chem. 404:41181–96
    [Google Scholar]
  110. 110.  Webster TA, Sismaet HJ, Conte JL, Chan I-PJ, Goluch ED 2014. Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin. Biosens. Bioelectron. 60:265–70
    [Google Scholar]
  111. 111.  Sismaet HJ, Banerjee A, McNish S, Choi Y, Torralba M et al. 2016. Electrochemical detection of Pseudomonas in wound exudate samples from patients with chronic wounds. Wound Repair Regen 24:2366–72
    [Google Scholar]
  112. 112.  Alatraktchi FA, Andersen SB, Johansen HK, Molin S, Svendsen WE 2016. Fast selective detection of pyocyanin using cyclic voltammetry. Sensors 16:3408
    [Google Scholar]
  113. 113.  Buzid A, Reen FJ, Langsi VK, Muimhneacháin , O'Gara F et al. 2017. Direct and rapid electrochemical detection of Pseudomonas aeruginosa quorum signaling molecules in bacterial cultures and cystic fibrosis sputum samples through cationic surfactant-assisted membrane disruption. ChemElectroChem 4:3533–41
    [Google Scholar]
  114. 114.  Wassum KM, Tolosa VM, Wang J, Walker E, Monbouquette HG, Maidment NT 2008. Silicon wafer-based platinum microelectrode array biosensor for near real-time measurement of glutamate in vivo. . Sensors 8:85023–36
    [Google Scholar]
  115. 115.  Qi L, Thomas E, White SH, Smith SK, Lee CA et al. 2016. Unmasking the effects of L-DOPA on rapid dopamine signaling with an improved approach for nafion coating carbon-fiber microelectrodes. Anal. Chem. 88:168129–36
    [Google Scholar]
  116. 116.  Sansuk S, Bitziou E, Joseph MB, Covington JA, Boutelle MG et al. 2013. Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode. Anal. Chem. 85:1163–69
    [Google Scholar]
  117. 117.  de Moraes ACM, Kubota LT 2016. Recent trends in field-effect transistors-based immunosensors. Chemosensors 4:420
    [Google Scholar]
  118. 118.  Burkitt R, Sharp D 2017. Submicromolar quantification of pyocyanin in complex biological fluids using pad-printed carbon electrodes. Electrochem. Commun. 78:43–46
    [Google Scholar]
  119. 119.  Li H, Arroyo-Currás N, Kang D, Ricci F, Plaxco KW 2016. Dual-reporter drift correction to enhance the performance of electrochemical aptamer-based sensors in whole blood. J. Am. Chem. Soc. 138:4915809–12
    [Google Scholar]
  120. 120.  Hashemi P, Dankoski EC, Lama R, Wood KM, Takmakov P, Wightman RM 2012. Brain dopamine and serotonin differ in regulation and its consequences. PNAS 109:2911510–15
    [Google Scholar]
  121. 121.  Buchan BW, Ledeboer NA 2014. Emerging technologies for the clinical microbiology laboratory. Clin. Microbiol. Rev. 27:4783–822
    [Google Scholar]
  122. 122.  Dargaville TR, Farrugia BL, Broadbent JA, Pace S, Upton Z, Voelcker NH 2013. Sensors and imaging for wound healing: a review. Biosens. Bioelectron. 41:30–42
    [Google Scholar]
  123. 123.  Goluch ED 2017. Microbial identification using electrochemical detection of metabolites. Trends Biotechnol 35:121125–28
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125627
Loading
/content/journals/10.1146/annurev-anchem-061417-125627
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error