Skip to main content
Log in

Preservation of brain metabolism in recently diagnosed Parkinson’s impulse control disorders

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

Impulse control disorders (ICD) are a common and disrupting complication of Parkinson’s disease (PD) treatment. Although their relationship with dopaminergic activity is well studied, their brain metabolic correlates are mostly unknown.

Methods

In this work we studied brain metabolism using brain 18F-FDG-PET. We performed a case-control study nested within a cohort of PD patients free of ICD at baseline to compare ICD patients right after ICD diagnosis and prior to any treatment modification with matched ICD-free patients. We also compared both PD groups with healthy controls.

Results

When compared with ICD-free PD patients, PD patients with recently diagnosed ICD showed higher glucose metabolism in widespread areas comprising prefrontal cortices, both amygdalae and default mode network hubs (p < 0.05, corrected). When compared to healthy controls, they did not show hypermetabolism, and the only hypometabolic region was the right caudate. In turn, ICD-free patients showed diffuse hypometabolism when compared to healthy controls.

Conclusion

Our results suggest brain metabolism is more preserved in PD patients with ICD than patients without ICD. This metabolic preservation could be related to ICD development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maloney EM, Djamshidian A, O’Sullivan SS. Phenomenology and epidemiology of impulsive-compulsive behaviours in Parkinson’s disease, atypical Parkinsonian disorders and non-Parkinsonian populations. J Neurol Sci. 2017;374:47–52.

    PubMed  Google Scholar 

  2. Berger C, Mehrhoff FW, Beier KM, Meinck H-M. Sexuelle Delinquenz und Morbus Parkinson [sexual delinquency and Parkinson’s disease]. Nervenarzt. 2003;74:370–5.

    PubMed  Google Scholar 

  3. Sobrido MJ, Dias-Silva JJ, Quintáns B. Behavioral disorders in Parkinson’s disease. Genetic, pharmacological and medico-legal aspects. Rev Neurol. 2009;48(Suppl 1):S43–8.

    PubMed  Google Scholar 

  4. Weintraub D, Siderowf AD, Potenza MN, Goveas J, Morales KH, Duda JE, et al. Dopamine agonist use is associated with impulse control disorders in Parkinson’s disease. Arch Neurol. 2006;63:969–73.

    PubMed  PubMed Central  Google Scholar 

  5. Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67:589–95.

    PubMed  Google Scholar 

  6. Bastiaens J, Dorfman BJ, Christos PJ, Nirenberg MJ. Prospective cohort study of impulse control disorders in Parkinson’s disease. Mov Disord. 2013;28:327–33.

    PubMed  PubMed Central  Google Scholar 

  7. Marinus J, Zhu K, Marras C, Aarsland D, van Hilten JJ. Risk factors for non-motor symptoms in Parkinson’s disease. Lancet Neurol. 2018;17:559–68.

    PubMed  Google Scholar 

  8. Isaias IU, Siri C, Cilia R, De Gaspari D, Pezzoli G, Antonini A. The relationship between impulsivity and impulse control disorders in Parkinson’s disease. Mov Disord. 2008;23:411–5.

    PubMed  Google Scholar 

  9. Marín-Lahoz J, Pagonabarraga J, Martinez-Horta S, Fernandez de Bobadilla R, Pascual-Sedano B, Pérez-Pérez J, et al. Parkinson’s Disease: Impulsivity Does Not Cause Impulse Control Disorders but Boosts Their Severity. Front Psychiatry. 2018;9:465.

    PubMed  PubMed Central  Google Scholar 

  10. Djamshidian A, O’Sullivan SS, Sanotsky Y, Sharman S, Matviyenko Y, Foltynie T, et al. Decision-making, impulsivity and addictions: do Parkinson’s disease patients jump to conclusions? Mov Disord. 2012;27:1137–45.

    PubMed  PubMed Central  Google Scholar 

  11. Joutsa J, Martikainen K, Vahlberg T, Voon V, Kaasinen V. Impulse control disorders and depression in Finnish patients with Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:155–60.

    PubMed  Google Scholar 

  12. Callesen MB, Weintraub D, Damholdt MF, Møller A. Impulsive and compulsive behaviors among Danish patients with Parkinson’s disease: prevalence, depression, and personality. Parkinsonism Relat Disord. 2014;20:22–6.

    CAS  PubMed  Google Scholar 

  13. Eisinger RS, Ramirez-Zamora A, Carbunaru S, Ptak B, Peng-Chen Z, Okun MS, et al. Medications, Deep Brain Stimulation, and Other Factors Influencing Impulse Control Disorders in Parkinson’s Disease. Front Neurol [Internet]. 2019 [cited 2019 Mar 11];10. Available from: https://www.frontiersin.org/articles/10.3389/fneur.2019.00086/full.

  14. Kraemmer J, Smith K, Weintraub D, Guillemot V, Nalls MA, Cormier-Dequaire F, et al. Clinical-genetic model predicts incident impulse control disorders in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87:1106–11.

    PubMed  Google Scholar 

  15. Aracil-Bolaños I, Strafella AP. Molecular imaging and neural networks in impulse control disorders in Parkinson’s disease. Parkinsonism Relat Disord. 2016;22:S101–5.

    PubMed  Google Scholar 

  16. Martini A, Dal Lago D, Edelstyn NMJ, Salgarello M, Lugoboni F, Tamburin S. Dopaminergic neurotransmission in patients with Parkinson’s disease and impulse control disorders: a systematic review and meta-analysis of PET and SPECT studies. Front Neurol [Internet]. 2018 [cited 2019 Mar 26];9. Available from: https://www.frontiersin.org/articles/10.3389/fneur.2018.01018/full.

  17. Biundo R, Formento-Dojot P, Facchini S, Vallelunga A, Ghezzo L, Foscolo L, et al. Brain volume changes in Parkinson’s disease and their relationship with cognitive and behavioural abnormalities. J Neurol Sci. 2011;310:64–9.

    PubMed  Google Scholar 

  18. Pellicano C, Niccolini F, Wu K, O’Sullivan SS, Lawrence AD, Lees AJ, et al. Morphometric changes in the reward system of Parkinson’s disease patients with impulse control disorders. J Neurol. 2015;262:2653–61.

    CAS  PubMed  Google Scholar 

  19. Biundo R, Weis L, Facchini S, Formento-Dojot P, Vallelunga A, Pilleri M, et al. Patterns of cortical thickness associated with impulse control disorders in Parkinson’s disease. Mov Disord. 2015;30:688–95.

    PubMed  Google Scholar 

  20. Imperiale F, Agosta F, Canu E, Markovic V, Inuggi A, Jecmenica-Lukic M, et al. Brain structural and functional signatures of impulsive–compulsive behaviours in Parkinson’s disease. Mol Psychiatry. 2018;23:459–66.

    CAS  PubMed  Google Scholar 

  21. Tessitore A, De Micco R, Giordano A, di Nardo F, Caiazzo G, Siciliano M, et al. Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson’s disease. Mov Disord. 2017;32:1710–9.

    CAS  PubMed  Google Scholar 

  22. Tessitore A, Santangelo G, De Micco R, Giordano A, Raimo S, Amboni M, et al. Resting-state brain networks in patients with Parkinson’s disease and impulse control disorders. Cortex. 2017;94:63–72.

    PubMed  Google Scholar 

  23. Verger A, Klesse E, Chawki MB, Witjas T, Azulay J-P, Eusebio A, et al. Brain PET substrate of impulse control disorders in Parkinson’s disease: a metabolic connectivity study. Hum Brain Mapp. 2018;39:3178–86.

    PubMed  PubMed Central  Google Scholar 

  24. Navalpotro-Gomez I, Dacosta-Aguayo R, Molinet-Dronda F, Martin-Bastida A, Botas-Peñin A, Jimenez-Urbieta H, et al. Nigrostriatal dopamine transporter availability, and its metabolic and clinical correlates in Parkinson’s disease patients with impulse control disorders. Eur J Nucl Med Mol Imaging. 2019;46:2065–76.

    CAS  PubMed  Google Scholar 

  25. Vriend C, Nordbeck AH, Booij J, van der Werf YD, Pattij T, Voorn P, et al. Reduced dopamine transporter binding predates impulse control disorders in Parkinson’s disease: reduced DaT BR predates ICD in PD. Mov Disord. 2014;29:904–11.

    CAS  PubMed  Google Scholar 

  26. Berti V, Mosconi L, Pupi A. Brain: normal variations and benign findings in FDG PET/CT imaging. PET Clin. 2014;9:129–40.

    PubMed  Google Scholar 

  27. Hirano S, Asanuma K, Ma Y, Tang C, Feigin A, Dhawan V, et al. Dissociation of metabolic and neurovascular responses to levodopa in the treatment of Parkinson’s disease. J Neurosci. 2008;28:4201–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mah L, Zarate CA, Nugent AC, Singh JB, Manji HK, Drevets WC. Neural mechanisms of antidepressant efficacy of the dopamine receptor agonist pramipexole in treatment of bipolar depression. Int J Neuropsychopharmacol. 2011;14:545–51.

    CAS  PubMed  Google Scholar 

  29. Kim E, Howes OD, Turkheimer FE, Kim B-H, Jeong JM, Kim JW, et al. The relationship between antipsychotic D2 occupancy and change in frontal metabolism and working memory : a dual [(11)C] raclopride and [(18) F] FDG imaging study with aripiprazole. Psychopharmacology. 2013;227:221–9.

    CAS  PubMed  Google Scholar 

  30. Ko JH, Lerner RP, Eidelberg D. Effects of levodopa on regional cerebral metabolism and blood flow. Mov Disord. 2015;30:54–63.

    CAS  PubMed  Google Scholar 

  31. Yakushev I, Drzezga A, Habeck C. Metabolic connectivity: methods and applications. Curr Opin Neurol. 2017;30:677–85.

    PubMed  Google Scholar 

  32. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease: MDS-PD Clinical Diagnostic Criteria. Mov Disord. 2015;30:1591–601.

    PubMed  Google Scholar 

  33. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–707 quiz 1837.

    PubMed  Google Scholar 

  34. Weintraub D, Hoops S, Shea JA, Lyons KE, Pahwa R, Driver-Dunckley ED, et al. Validation of the questionnaire for impulsive-compulsive disorders in Parkinson’s disease. Mov Disord. 2009;24:1461–7.

    PubMed  PubMed Central  Google Scholar 

  35. Brown RIF. Some contributions of the study of gambling to the study of other addictions. In: Eadington WR, Cornelius JA, editors. Gambling behavior and problem gambling. 1st ed. Reno: Univ of Nevada Pr; 1993.

    Google Scholar 

  36. Griffiths M. A ‘components’ model of addiction within a biopsychosocial framework. J Subst Abus. 2005;10:191–7.

    Google Scholar 

  37. Weintraub D, Mamikonyan E, Papay K, Shea JA, Xie SX, Siderowf A. Questionnaire for impulsive-compulsive disorders in Parkinson’s disease-rating scale. Mov Disord. 2012;27:242–7.

    PubMed  Google Scholar 

  38. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70.

    PubMed  Google Scholar 

  39. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25:2649–53.

    PubMed  Google Scholar 

  40. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–70.

    CAS  PubMed  Google Scholar 

  41. Marinus J, Leentjens AF, Visser M, Stiggelbout AM, van Hilten JJ. Evaluation of the hospital anxiety and depression scale in patients with Parkinson’s disease. Clin Neuropharmacol. 2002;25:318–24.

    PubMed  Google Scholar 

  42. Starkstein SE, Mayberg HS, Preziosi TJ, Andrezejewski P, Leiguarda R, Robinson RG. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 1992;4:134–9.

    CAS  PubMed  Google Scholar 

  43. Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt impulsiveness scale. J Clin Psychol. 1995;51:768–74.

    CAS  PubMed  Google Scholar 

  44. Pagonabarraga J, Kulisevsky J, Llebaria G, García-Sánchez C, Pascual-Sedano B, Gironell A. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Mov Disord. 2008;23:998–1005.

    PubMed  Google Scholar 

  45. de Bobadilla RF, Pagonabarraga J, Martínez-Horta S, Pascual-Sedano B, Campolongo A, Kulisevsky J. Parkinson’s disease-cognitive rating scale: Psychometrics for mild cognitive impairment. Mov Disord. 2013;28:1376–83.

    Google Scholar 

  46. Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F] FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.

    PubMed  Google Scholar 

  47. Martínez-Horta S, Moreu A, Perez-Perez J, Sampedro F, Horta-Barba A, Pagonabarraga J, et al. The impact of bilingualism on brain structure and function in Huntington’s disease. Parkinsonism Relat Disord. 2019;60:92–7.

  48. Chen J, Swope D, Dashtipour K. Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of Parkinson’s disease. Clin Ther. 2007;29:1825–49.

    CAS  PubMed  Google Scholar 

  49. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97:11050–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Greve DN, Svarer C, Fisher PM, Feng L, Hansen AE, Baare W, et al. Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data. Neuroimage. 2014;92:225–36.

    PubMed  Google Scholar 

  51. Greve DN, Salat DH, Bowen SL, Izquierdo-Garcia D, Schultz AP, Catana C, et al. Different partial volume correction methods lead to different conclusions: an (18)F-FDG-PET study of aging. Neuroimage. 2016;132:334–43.

    PubMed  Google Scholar 

  52. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage. 2014;92:381–97.

    PubMed  Google Scholar 

  53. Rao H, Mamikonyan E, Detre JA, Siderowf AD, Stern MB, Potenza MN, et al. Decreased ventral striatal activity with impulse control disorders in Parkinson’s disease. Mov Disord. 2010;25:1660–9.

    PubMed  PubMed Central  Google Scholar 

  54. Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished fronto-striatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012;71:749–57.

    PubMed  PubMed Central  Google Scholar 

  55. Sampedro F, Vilaplana E, de Leon MJ, Alcolea D, Pegueroles J, Montal V, et al. APOE-by-sex interactions on brain structure and metabolism in healthy elderly controls. Oncotarget [Internet]. 2015 [cited 2019 Nov 26];6. Available from: http://www.oncotarget.com/fulltext/5185.

  56. Riba J, Krämer UM, Heldmann M, Richter S, Münte TF. Dopamine agonist increases risk taking but blunts reward-related brain activity. PLoS One [Internet]. 2008 [cited 2019 Mar 11];3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423613/.

  57. Ye Z, Hammer A, Camara E, Münte TF. Pramipexole modulates the neural network of reward anticipation. Hum Brain Mapp. 2011;32:800–11.

    PubMed  PubMed Central  Google Scholar 

  58. Dragogna F, Mauri MC, Marotta G, Armao FT, Brambilla P, Altamura AC. Brain metabolism in substance-induced psychosis and schizophrenia: a preliminary PET study. Neuropsychobiology. 2014;70:195–202.

    CAS  PubMed  Google Scholar 

  59. Siri C, Cilia R, Reali E, Pozzi B, Cereda E, Colombo A, et al. Long-term cognitive follow-up of Parkinson’s disease patients with impulse control disorders. Mov Disord. 2015;30:696–704.

    PubMed  Google Scholar 

  60. Martini A, Dal Lago D, Edelstyn NMJ, Grange JA, Tamburin S. Impulse control disorder in Parkinson’s disease: a meta-analysis of cognitive, affective, and motivational correlates. Front Neurol [Internet]. 2018 [cited 2019 Jun 4];9. Available from: https://www.frontiersin.org/articles/10.3389/fneur.2018.00654/full#h10.

  61. Schindlbeck KA, Eidelberg D. Network imaging biomarkers: insights and clinical applications in Parkinson’s disease. Lancet Neurol. 2018;17:629–40.

    PubMed  Google Scholar 

  62. Pagonabarraga J, Kulisevsky J. Cognitive impairment and dementia in Parkinson’s disease. Neurobiol Dis. 2012;46:590–6.

    PubMed  Google Scholar 

  63. Sampedro F, Marín-Lahoz J, Martínez-Horta S, Pagonabarraga J, Kulisevsky J. Dopaminergic degeneration induces early posterior cortical thinning in Parkinson’s disease. Neurobiol Dis. 2019;124:29–35.

    CAS  PubMed  Google Scholar 

  64. Firbank MJ, Yarnall AJ, Lawson RA, Duncan GW, Khoo TK, Petrides GS, et al. Cerebral glucose metabolism and cognition in newly diagnosed Parkinson’s disease: ICICLE-PD study. J Neurol Neurosurg Psychiatry. 2017;88:310–6.

    CAS  PubMed  Google Scholar 

  65. Tan H, Li X, Wei K, Guan Y. Study on brain glucose metabolic networks in Parkinson’s disease patients with visual spatial dysfunction by 18F-FDG PET imaging. Tradit Med Mod Med. 2018;01:27–31.

    Google Scholar 

  66. Matthews DC, Lerman H, Lukic A, Andrews RD, Mirelman A, Wernick MN, et al. FDG PET Parkinson’s disease-related pattern as a biomarker for clinical trials in early stage disease. NeuroImage Clin. 2018;20:572–9.

    PubMed  PubMed Central  Google Scholar 

  67. Martinez-Horta S, Sampedro F, Pagonabarraga J, Fernandez-Bobadilla R, Marin-Lahoz J, Riba J, et al. Non-demented Parkinson’s disease patients with apathy show decreased grey matter volume in key executive and reward-related nodes. Brain Imaging Behav. 2017;11:1334–42.

    PubMed  Google Scholar 

  68. Dujardin K, Sockeel P, Delliaux M, Destée A, Defebvre L. Apathy may herald cognitive decline and dementia in Parkinson’s disease. Mov Disord. 2009;24:2391–7.

    PubMed  Google Scholar 

  69. Martínez-Horta S, Riba J, de Bobadilla RF, Pagonabarraga J, Pascual-Sedano B, Antonijoan RM, et al. Apathy in Parkinson’s disease: neurophysiological evidence of impaired incentive processing. J Neurosci. 2014;34:5918–26.

    PubMed  PubMed Central  Google Scholar 

  70. Leroi I, Andrews M, McDonald K, Harbishettar V, Elliott R, Byrne EJ, et al. Apathy and impulse control disorders in Parkinson’s disease: a direct comparison. Parkinsonism Relat Disord. 2012;18:198–203.

    PubMed  Google Scholar 

  71. Delrieu J, Desmidt T, Camus V, Sourdet S, Boutoleau-Bretonnière C, Mullin E, et al. Apathy as a feature of prodromal Alzheimer’s disease: an FDG-PET ADNI study. Int J Geriatr Psychiatry. 2015;30:470–7.

    PubMed  Google Scholar 

  72. Gatchel JR, Donovan NJ, Locascio JJ, Becker JA, Rentz DM, Sperling RA, et al. Regional 18F-Fluorodeoxyglucose hypometabolism is associated with higher apathy scores over time in early Alzheimer disease. Am J Geriatr Psychiatry. 2017;25:683–93.

    PubMed  PubMed Central  Google Scholar 

  73. Martínez-Horta S, Perez-Perez J, Sampedro F, Pagonabarraga J, Horta-Barba A, Carceller-Sindreu M, et al. Structural and metabolic brain correlates of apathy in Huntington’s disease. Mov Disord. 2018;33:1151–9.

    PubMed  Google Scholar 

Download references

Funding

This work was financially supported by CIBERNED and grants from la Marató de TV3 (2014/U/477 and 20142910) and Fondo de Investigaciones Sanitarias del Ministerio de Sanidad y Consumo (PI15/00962). None of the supporting organizations played a direct role on the inception, development, or publication of this work.

Author information

Authors and Affiliations

Authors

Contributions

Study design: JML, JK, SMH, IC.

Study execution: JML, AHB, SMH, IAB, MC, JP, HBM.

Image analysis: FS.

Statistical analysis: FS, JML.

First draft: JML, FS.

Manuscript review: all authors.

Corresponding author

Correspondence to Jaime Kulisevsky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Statement of informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology.

Electronic supplementary material

ESM 1

(DOCX 3200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marín-Lahoz, J., Sampedro, F., Horta-Barba, A. et al. Preservation of brain metabolism in recently diagnosed Parkinson’s impulse control disorders. Eur J Nucl Med Mol Imaging 47, 2165–2174 (2020). https://doi.org/10.1007/s00259-019-04664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04664-2

Keywords

Navigation