Skip to main content

Advertisement

Log in

hnRNPA2B1 inhibits the exosomal export of miR-503 in endothelial cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The chemotherapeutic drug epirubicin increases the exosomal export of miR-503 in endothelial cells. To understand the mechanisms behind this process, we transfected endothelial cells with miR-503 carrying a biotin tag. Then, we pulled-down the proteins interacting with miR-503 and studied their role in microRNA exosomal export. A total of four different binding partners were identified by mass spectrometry and validated by western blotting and negative controls, among them ANXA2 and hnRNPA2B1. Using knock-down systems combined with pull-down analysis, we determined that epirubicin mediates the export of miR-503 by disrupting the interaction between hnRNPA2B1 and miR-503. Then, both ANXA2 and miR-503 are sorted into exosomes while hnRNPA2B1 is relocated into the nucleus. The combination of these processes culminates in the increased export of miR-503. These results suggest, for the first time, that RNA-binding proteins can negatively regulate the exosomal sorting of microRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Epi:

Epirubicin

EVs:

Extracellular vesicles

HUVECs:

Human umbilical vein endothelial cells

HMVECs:

Human microvascular endothelial cells

ANXA2:

Annexin A2

hnRNPA2B1:

Heteronuclear ribonucleoprotein A2/B1

TSP1/thbs1:

Thrombospondin 1

SYN:

Syntenin

VIM:

Vimentin

Vinculin:

Vinculin

MEC:

MicroRNA exporting complex

References

  1. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm.2017.125

    Article  PubMed  Google Scholar 

  2. McKelvey KJ, Powell KL, Ashton AW et al (2015) Exosomes: mechanisms of uptake. J Circ Biomark. https://doi.org/10.5772/61186

    Article  PubMed  Google Scholar 

  3. Dreyer F, Baur A (2016) Biogenesis and functions of exosomes and extracellular vesicles. Methods Mol Biol 1448:201–216. https://doi.org/10.1007/978-1-4939-3753-0_15

    Article  CAS  PubMed  Google Scholar 

  4. Pérez-Boza J, Lion M, Struman I (2018) Exploring the RNA landscape of endothelial exosomes. RNA 24:423–435. https://doi.org/10.1261/rna.064352.117

    Article  CAS  PubMed  Google Scholar 

  5. Kalluri R, LeBleu VS (2017) Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harb Symp Quant Biol LXXXI:030932. https://doi.org/10.1101/sqb.2016.81.030932

  6. Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 1841:108–120. https://doi.org/10.1016/j.bbalip.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  7. Beach A, Zhang H-G, Ratajczak MZ, Kakar SS (2014) Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res 7:14. https://doi.org/10.1186/1757-2215-7-14

    Article  CAS  PubMed  Google Scholar 

  8. Li Q, Shao Y, Zhang X et al (2015) Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol J Int Soc Oncodevelopmental Biol Med 36:2007–2012. https://doi.org/10.1007/s13277-014-2807-y

    Article  CAS  Google Scholar 

  9. Bovy N, Blomme B, Frères P et al (2015) Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer. Oncotarget 6:10253–10266. https://doi.org/10.18632/oncotarget.3520

  10. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Investig 52:2745–2756. https://doi.org/10.1172/JCI107470

    Article  CAS  PubMed  Google Scholar 

  11. Théry C, Witwer KW, Aikawa E et al (2019) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 8:1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  Google Scholar 

  12. Ørom UA, Lund AH (2007) Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43:162–165. https://doi.org/10.1016/j.ymeth.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  13. Betancur JG, Yoda M, Tomari Y (2012) miRNA-like duplexes as RNAi triggers with improved specificity. Front Genet 3:2008–2013. https://doi.org/10.3389/fgene.2012.00127

    Article  CAS  Google Scholar 

  14. Rambout X, Detiffe C, Bruyr J et al (2016) The transcription factor ERG recruits CCR4-NOT to control mRNA decay and mitotic progression. Nat Struct Mol Biol 23:663–672. https://doi.org/10.1038/NSMB.3243

    Article  CAS  PubMed  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  16. Tong L (2013) Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci C 70:863–891. https://doi.org/10.1007/s00018-012-1096-0

    Article  CAS  Google Scholar 

  17. Neill T, Jones HR, Crane-Smith Z et al (2013) Decorin evokes rapid secretion of thrombospondin-1 in basal breast carcinoma cells via inhibition of RhoA/ROCK1. FEBS J 280:2353–2368. https://doi.org/10.1111/febs.12148

    Article  CAS  PubMed  Google Scholar 

  18. Hellewell AL, Gong X, Schärich K et al (2015) Modulation of the extracellular matrix patterning of thrombospondins by actin dynamics and thrombospondin oligomer state. Biosci Rep. https://doi.org/10.1042/BSR20140168

    Article  PubMed  Google Scholar 

  19. de Viana LS, Affonso RJ, Silva SRM, et al (2013) Relationship between the expression of the extracellular matrix genes SPARC, SPP1, FN1, ITGA5 and ITGAV and clinicopathological parameters of tumor progression and colorectal cancer dissemination. Oncology 84:81–91. https://doi.org/10.1159/000343436

    Article  CAS  Google Scholar 

  20. Dave JM, Bayless KJ (2014) Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirc (New York, NY 1994) 21:333–344. https://doi.org/10.1111/micc.12111

  21. Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186. https://doi.org/10.1146/annurev-biophys-042910-155359

    Article  CAS  PubMed  Google Scholar 

  22. Aukrust I, Hollås H, Strand E et al (2007) The mRNA-binding site of annexin A2 resides in helices C–D of its domain IV. J Mol Biol 368:1367–1378. https://doi.org/10.1016/j.jmb.2007.02.094

    Article  CAS  PubMed  Google Scholar 

  23. Vedeler A, Hollås H, Grindheim AK, Raddum AM (2012) Multiple roles of annexin A2 in post-transcriptional regulation of gene expression. Curr Protein Pept Sci 13:401–412

    Article  CAS  PubMed  Google Scholar 

  24. Luo M, Hajjar KA (2013) Annexin A2 system in human biology: cell surface and beyond. Semin Thromb Hemost 39:338–346. https://doi.org/10.1055/s-0033-1334143

    Article  CAS  PubMed  Google Scholar 

  25. He Y, Smith R (2009) Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B. Cell Mol Life Sci 66:1239–1256. https://doi.org/10.1007/s00018-008-8532-1

    Article  CAS  PubMed  Google Scholar 

  26. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980. https://doi.org/10.1038/ncomms3980

    Article  CAS  PubMed  Google Scholar 

  27. Santangelo L, Giurato G, Cicchini C et al (2016) The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep 17:799–808. https://doi.org/10.1016/j.celrep.2016.09.031

    Article  CAS  PubMed  Google Scholar 

  28. Teng Y, Ren Y, Hu X et al (2017) MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun 8:1–16. https://doi.org/10.1038/ncomms14448

    Article  CAS  Google Scholar 

  29. Lu P, Li H, Li N et al (2017) MEX3C interacts with adaptor-related protein complex 2 and involves in miR-451a exosomal sorting. PLoS ONE 12:1–25. https://doi.org/10.1371/journal.pone.0185992

    Article  CAS  Google Scholar 

  30. Shurtleff M, Karfilis KV, Temoche-Diaz M et al (2016) Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife 5:e19276. https://doi.org/10.1101/040238

    Article  CAS  PubMed  Google Scholar 

  31. Chan Y-K, Zhang H, Liu P et al (2015) Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. Int J Cancer 137:1830–1841. https://doi.org/10.1002/ijc.29562

    Article  CAS  PubMed  Google Scholar 

  32. Tauro BJ, Mathias RA, Greening DW et al (2013) Oncogenic H-ras reprograms Madin–Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Mol Cell Proteomics MCP 12:2148–2159. https://doi.org/10.1074/mcp.M112.027086

    Article  CAS  PubMed  Google Scholar 

  33. Dudek AZ, Mahaseth H (2005) Circulating angiogenic cytokines in patients with advanced non-small cell lung cancer: correlation with treatment response and survival. Cancer Investig 23:193–200

    Article  CAS  Google Scholar 

  34. Gonzalez FJ, Rueda A, Sevilla I et al (2004) Shift in the balance between circulating thrombospondin-1 and vascular endothelial growth factor in cancer patients: relationship to platelet a-granule content and primary activation. Int J Biol Markers 19:221–228. https://doi.org/10.5301/JBM.2008.1959

    Article  CAS  Google Scholar 

  35. Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y (2009) Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15:195–206. https://doi.org/10.1016/j.ccr.2009.01.023

    Article  CAS  Google Scholar 

  36. Liu C-Y, Lin H-H, Tang M-J, Wang Y-K (2015) Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget 6:15966–15983

    Article  PubMed  Google Scholar 

  37. Jeppesen DK, Nawrocki A, Jensen SG et al (2014) Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics 14:699–712. https://doi.org/10.1002/pmic.201300452

    Article  CAS  Google Scholar 

  38. Challa AA, Stefanovic B (2011) A novel role of vimentin filaments: binding and stabilization of collagen mRNAs. Mol Cell Biol 31:3773–3789. https://doi.org/10.1128/MCB.05263-11

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt Y, Biniossek M, Stark GB et al (2015) Osteoblastic alkaline phosphatase mRNA is stabilized by binding to vimentin intermediary filaments. Biol Chem 396:253–260. https://doi.org/10.1515/hsz-2014-0274

    Article  CAS  PubMed  Google Scholar 

  40. Song KY, Choi HS, Law P-Y et al (2013) Vimentin interacts with the 5’-untranslated region of mouse mu opioid receptor (MOR) and is required for post-transcriptional regulation. RNA Biol 10:256–266. https://doi.org/10.4161/rna.23022

    Article  CAS  PubMed  Google Scholar 

  41. Chatterjee S, Panda AC, Berwal SK et al (2013) Vimentin is a component of a complex that binds to the 5′-UTR of human heme-regulated eIF2α kinase mRNA and regulates its translation. FEBS Lett 587:474–480. https://doi.org/10.1016/j.febslet.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  42. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ (2012) ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40:D1241–D1244. https://doi.org/10.1093/nar/gkr828

    Article  CAS  PubMed  Google Scholar 

  43. Koumangoye RB, Sakwe AM, Goodwin JS et al (2011) Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS ONE 6:e24234. https://doi.org/10.1371/journal.pone.0024234

    Article  CAS  PubMed  Google Scholar 

  44. Wang C-Y, Lin C-F (2014) Annexin A2: its molecular regulation and cellular expression in cancer development. Dis Markers. https://doi.org/10.1155/2014/308976

    Article  PubMed  Google Scholar 

  45. Wang T, Yuan J, Zhang J et al (2015) Anxa2 binds to STAT3 and promotes epithelial to mesenchymal transition in breast cancer cells. Oncotarget 6:30975–30992. https://doi.org/10.18632/oncotarget.5199

  46. Zhang F, Zhang H, Wang Z et al (2014) P-glycoprotein associates with Anxa2 and promotes invasion in multidrug resistant breast cancer cells. Biochem Pharmacol 87:292–302. https://doi.org/10.1016/j.bcp.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  47. Maji S, Chaudhary P, Akopova I et al (2016) Exosomal annexin A2 promotes angiogenesis and breast cancer metastasis. Mol Cancer Res MCR. https://doi.org/10.1158/1541-7786.MCR-16-0163

    Article  PubMed  Google Scholar 

  48. Ling Q, Jacovina AT, Deora A et al (2004) Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Investig 113:38–48. https://doi.org/10.1172/JCI19684

    Article  CAS  PubMed  Google Scholar 

  49. Sharma MR, Rothman V, Tuszynski GP, Sharma MC (2006) Antibody-directed targeting of angiostatin’s receptor annexin II inhibits Lewis Lung Carcinoma tumor growth via blocking of plasminogen activation: possible biochemical mechanism of angiostatin’s action. Exp Mol Pathol 81:136–145. https://doi.org/10.1016/j.yexmp.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  50. Filipenko NR, MacLeod TJ, Yoon C-S, Waisman DM (2004) Annexin A2 is a novel RNA-binding protein. J Biol Chem 279:8723–8731. https://doi.org/10.1074/jbc.M311951200

    Article  CAS  PubMed  Google Scholar 

  51. Kwak H, Park MW, Jeong S (2011) Annexin A2 Binds RNA and reduces the frameshifting efficiency of infectious bronchitis virus. PLoS ONE 6:e24067. https://doi.org/10.1371/journal.pone.0024067

    Article  CAS  PubMed  Google Scholar 

  52. Hagiwara K, Katsuda T, Gailhouste L et al (2015) Commitment of Annexin A2 in recruitment of microRNAs into extracellular vesicles. FEBS Lett 589:4071–4078. https://doi.org/10.1016/j.febslet.2015.11.036

    Article  CAS  PubMed  Google Scholar 

  53. Alarcón CR, Goodarzi H, Lee H et al (2015) HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162:1299–1308. https://doi.org/10.1016/j.cell.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  54. Lan X, Yan J, Ren J, et al (2016) A novel long noncoding RNA Lnc-HC binds hnRNPA2B1 to regulate expressions of Cyp7a1 and Abca1 in hepatocytic cholesterol metabolism: hepatology, Vol. XX, No. X, 2015 Lan et al. Hepatology 64:58–72. https://doi.org/10.1002/hep.28391

  55. Shilo A, Ben Hur V, Denichenko P et al (2014) Splicing factor hnRNP A2 activates the Ras-MAPK-ERK pathway by controlling A-Raf splicing in hepatocellular carcinoma development. RNA 20:505–515. https://doi.org/10.1261/rna.042259.113

    Article  CAS  PubMed  Google Scholar 

  56. Zhou Z-J, Dai Z, Zhou S-L et al (2014) HNRNPAB induces epithelial-mesenchymal transition and promotes metastasis of hepatocellular carcinoma by transcriptionally activating SNAIL. Cancer Res 74:2750–2762. https://doi.org/10.1158/0008-5472.CAN-13-2509

    Article  CAS  PubMed  Google Scholar 

  57. Dowling P, Pollard D, Larkin A et al (2015) Abnormal levels of heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) in tumour tissue and blood samples from patients diagnosed with lung cancer. Mol Biosyst 11:743–752. https://doi.org/10.1039/c4mb00384e

    Article  CAS  PubMed  Google Scholar 

  58. Santarosa M, Del Col L, Viel A et al (2010) BRCA1 modulates the expression of hnRNPA2B1 and KHSRP. Cell Cycle 9:4666–4673. https://doi.org/10.4161/cc.9.23.14022

    Article  CAS  PubMed  Google Scholar 

  59. Hu Y, Sun Z, Deng J et al (2017) Splicing factor hnRNPA2B1 contributes to tumorigenic potential of breast cancer cells through STAT3 and ERK1/2 signaling pathway. Tumour Biol J Int Soc Oncodevelopmental Biol Med 39:1010428317694318. https://doi.org/10.1177/1010428317694318

    Article  CAS  Google Scholar 

  60. Gu W-J, Liu H-L (2013) Induction of pancreatic cancer cell apoptosis, invasion, migration, and enhancement of chemotherapy sensitivity of gemcitabine, 5-FU, and oxaliplatin by hnRNP A2/B1 siRNA. Anticancer Drugs 24:1. https://doi.org/10.1097/CAD.0b013e3283608bc5

    Article  CAS  Google Scholar 

  61. Wang H, Liang L, Dong Q et al (2018) Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma. Theranostics 8:2814–2829. https://doi.org/10.7150/thno.23012

    Article  CAS  PubMed  Google Scholar 

  62. Tchurikov NA, Kretova OV, Fedoseeva DM et al (2013) DNA double-strand breaks coupled with PARP1 and HNRNPA2B1 binding sites flank coordinately expressed domains in human chromosomes. PLoS Genet 9:e1003429. https://doi.org/10.1371/journal.pgen.1003429

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the technology platform support staff at the GIGA Research Center. We thank Marie-Alice Meuwis for her support in designing and interpreting the mass spectrometry data. We thank Nicolas Bovy and Marc Thiry for the generation of the electronic microscopy data. This study was supported by the University of Liège (ULiege), the Fonds National de la Recherche Scientifique (FNRS), Télévie and the Fonds Léon Frédéricq. The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Contributions

JPB designed, supervised, conducted and performed experiments and statistical analyses, interpreted the data, and wrote the manuscript. AB performed the experiments with HMVECs, immunofluorescence, fractionation experiments, and exosome characterization. ML performed experiments and provided technical backup. FD participated in data analysis and provided scientific suggestions. IS conceived and designed the study, coordinated the experiments, and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ingrid Struman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 385 kb)

18_2019_3425_MOESM2_ESM.tif

Fig S1: Design of miR-503-biotin and cel-miR-67-biotin duplexes. In black is shown the natural miR-503 and cel-miR-67 sequences and the modifications are indicated in colors: orange for the biotin addition, blue for the 3' tailing, light purple for the phosphorylations and in bold for the mismatch included to de-stabilize the carrier (reverse) strand (TIF 746 kb)

18_2019_3425_MOESM3_ESM.tif

Fig S2: Biotinylation of miR-503 does not prevent the exosomal export of miR-503 triggered by Epirubicin and transfection validations. (a) Cells were transfected with miR-503-biotin. After 24h, cells were treated with Epirubicin and the export of miR-503 was assessed by RT-qPCR in exosomes from treated (green) and untreated (grey) cells. (b) The efficiency of the transfection of the synthetic RNAs was assessed by RT-qPCR in mock and (b) miR-503-bio or (c) cel-miR-67-bio transfected cells. (d) Cells were transfected with cel-miR-67. After 24h, cells were treated with Epirubicin and the exosomal and cellular abundance of cell-miR-67 was assessed by RT-qPCR in treated (green) and untreated (grey) conditions. Data shows mean and SEM of three independent experiments (TIF 821 kb)

18_2019_3425_MOESM4_ESM.tif

Fig S3: cel-miR-67 is not immunoprecipitated with ANXA1 and hnRNPA2B1. HUVECs were transfected with cel-miR-67 (10 nM). 48h later, immunoprecipitation assays were performed using the indicated antibodies or an IgG control (IgG). Then the levels of cel-miR-67 were evaluated by qPCR. Plots show (a) fold change of cel-miR-67 in the immunoprecipitated (IP) vs input fractions (IN) in non-treated conditions and (b) fold change of immunoprecipitated cel-miR-67 in Epirubicin-treated (EPI) vs non-treated cells (NT). Plots represent mean and SEM from three independent experiments,* p<0.05; ** p<0.01, ***p<0.001. IN= 1% of the cellular lysate before immunoprecipitation (TIF 14120 kb)

18_2019_3425_MOESM5_ESM.tif

Fig S4: ANXA2, Thrombspondin-1 (TSP-1) and Vimentin (VIM ) do not re-localize into the nucleus after Epirubicin treatment. (a) Confocal images of ANXA2 (top panels), TSP1 (middle panel) and VIM (lower panels) in green and DAPI in blue of HUVECs treated with Epirubicin for 24h. Pictures taken at the indicated times after starting the treatment. (b) Western blotting for GAPDH (cytoplasm marker) and Histone H3 (nucleus marker) in different subcellular fractions (TIF 17473 kb)

18_2019_3425_MOESM6_ESM.tif

Fig S5: Validation of the knock down of the components of ExoMiR complex. Cells were transfected with siRNAs against the indicated genes or control siRNA (siScr). The levels of (a) mRNA were assessed at 24, 48 and 72h, and the levels of (b) protein were assessed with a 24h delay by Western Blotting. (* p<0.05; ** p<0.01, ***p<0.001) (TIF 14393 kb)

Supplementary file7 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Boza, J., Boeckx, A., Lion, M. et al. hnRNPA2B1 inhibits the exosomal export of miR-503 in endothelial cells. Cell. Mol. Life Sci. 77, 4413–4428 (2020). https://doi.org/10.1007/s00018-019-03425-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03425-6

Keywords

Navigation