Skip to main content
Log in

Tensor Fascia Latae Muscle Structure and Activation in Individuals With Lower Limb Musculoskeletal Conditions: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Dysfunction of the tensor fascia latae (TFL) muscle is often clinically implicated in many musculoskeletal disorders.

Objective

To systematically review the literature of the TFL muscle to determine whether there are differences in its structure and activation between individuals with and without lower limb musculoskeletal conditions.

Data sources

A comprehensive search in MEDLINE, EMBASE, CINHAL, and LILACS was undertaken from year of inception to 9 July 2019.

Eligibility criteria for selecting studies

Studies that directly investigated the structure or activity of the TFL muscle between individuals with a lower limb musculoskeletal condition and a pain-free control group.

Results

Seventeen studies were included (n = 556 participants), eight reporting structure and ten activation of the TFL muscle. Conditions included lateral hip pain, hip joint pathology, ACL injury, iliotibial band syndrome, and patellofemoral joint osteoarthritis. Meta-analysis identified with low confidence (p value = 0.07) a small tendency towards hypertrophy in the affected side of participants with hip joint diseases (SMD 0.37, 95% CI [− 0.02, 0.77]). Moderate effect sizes were found for a higher cross-sectional area of the TFL/sartorius ratio in abductor tendon tear (SMD 0.74; 95% CI [0.05, 1.43, p value = 0.04), and for a smaller body mass normalized TFL volume in patellofemoral joint osteoarthritis (SMD − 0.61; 95% CI [− 1.23, 0.00], p value = 0.05). Normalised electromyography (EMG) amplitude did not differ between groups for any condition, but when EMG was analysed as linear envelopes or synergies, some differences in pattern of TFL activation were observed between individuals with lateral hip pain and controls. Timing of TFL activation did not differ between individuals with knee conditions and controls.

Conclusions and implications

Common clinical assumptions of the role of TFL muscle in lower limb musculoskeletal conditions are not well investigated and poorly supported by current research. There are contradictory findings on the muscle size of TFL. Differing methodology in muscle activation studies precludes a clear interpretation for comparison between groups.

PROSPERO registration number

CRD42017076160.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baker RL, Fredericson M. Iliotibial band syndrome in runners: biomechanical implications and exercise interventions. Phys Med Rehabil Clin N Am. 2016;27(1):53–77. https://doi.org/10.1016/j.pmr.2015.08.001.

    Article  PubMed  Google Scholar 

  2. Baker RL, Souza RB, Rauh MJ, et al. Differences in knee and hip adduction and hip muscle activation in runners with and without iliotibial band syndrome. PM R. 2018;10(10):1032–9. https://doi.org/10.1016/j.pmrj.2018.04.004.

    Article  PubMed  Google Scholar 

  3. Merican AM, Amis AA. Iliotibial band tension affects patellofemoral and tibiofemoral kinematics. J Biomech. 2009;42(10):1539–46. https://doi.org/10.1016/j.jbiomech.2009.03.041.

    Article  PubMed  Google Scholar 

  4. Gottschalk F, Kourosh S, Leveau B. The functional anatomy of tensor fasciae latae and gluteus medius and minimus. J Anat. 1989;166:179–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sahrmann S. Diagnosis and treatment of movement impairment syndromes: includes E-book. St Louis, United States: Elsevier Science Health Science Division; 2001.

    Google Scholar 

  6. Grimaldi A, Richardson C, Durbridge G, et al. The association between degenerative hip joint pathology and size of the gluteus maximus and tensor fascia lata muscles. Man Ther. 2009;14(6):611–7. https://doi.org/10.1016/j.math.2008.11.002.

    Article  PubMed  Google Scholar 

  7. Rabelo NDDA, Lucareli PRG. Do hip muscle weakness and dynamic knee valgus matter for the clinical evaluation and decision-making process in patients with patellofemoral pain? Braz J Phys Ther. 2018;22(2):105–9. https://doi.org/10.1016/j.bjpt.2017.10.002.

    Article  PubMed  Google Scholar 

  8. Lavine R. Iliotibial band friction syndrome. Curr Rev Musculoskelet Med. 2010;3(1–4):18–22. https://doi.org/10.1007/s12178-010-9061-8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Selkowitz DM, Beneck GJ, Powers CM. Which exercises target the gluteal muscles while minimizing activation of the tensor fascia lata? Electromyographic assessment using fine wire electrodes. J Orthop Sports Phys Ther. 2013;43(2):54–64. https://doi.org/10.2519/jospt.2013.4116.

    Article  PubMed  Google Scholar 

  10. Berry JW, Lee TS, Foley HD, et al. Resisted side stepping: the effect of posture on hip abductor muscle activation. J Orthop Sports Phys Ther. 2015;45(9):675–82. https://doi.org/10.2519/jospt.2015.5888.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hamill J, Miller R, Noehren B, Davis I. A prospective study of iliotibial band strain in runners. Clin Biomech (Bristol, Avon). 2008;23(8):1018–25. https://doi.org/10.1016/j.clinbiomech.2008.04.017.

    Article  PubMed  Google Scholar 

  12. Gundersen HJG, Bendtsen TF, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB, Vesterby A, West MJ. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS. 1988;96(1–6):379–94.

    Article  CAS  PubMed  Google Scholar 

  13. Jones EJ, Bishop PA, Woods AK, et al. Cross-sectional area and muscular strength: a brief review. Sports Med. 2008;38(12):987–94. https://doi.org/10.2165/00007256-200838120-00003.

    Article  PubMed  Google Scholar 

  14. Luca CJD. The use of surface electromyography in biomechanics. J Appl Biomech. 1997;13(2):135–63. https://doi.org/10.1123/jab.13.2.135.

    Article  Google Scholar 

  15. Marshall AR, Noronha M, Zacharias A, et al. Structure and function of the abductors in patients with hip osteoarthritis: Systematic review and meta-analysis. J Back Musculoskelet Rehabil. 2016;29(2):191–204. https://doi.org/10.3233/bmr-150614.

    Article  PubMed  Google Scholar 

  16. Semciw A, Neate R, Pizzari T. Running related gluteus medius function in health and injury: a systematic review with meta-analysis. J Electromyogr Kinesiol. 2016;30:98–110. https://doi.org/10.1016/j.jelekin.2016.06.005.

    Article  PubMed  Google Scholar 

  17. Louw M, Deary C. The biomechanical variables involved in the aetiology of iliotibial band syndrome in distance runners—a systematic review of the literature. Phys Ther Sport. 2014;15(1):64–75. https://doi.org/10.1016/j.ptsp.2013.07.002.

    Article  PubMed  Google Scholar 

  18. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. https://doi.org/10.1371/journal.pmed.1000100.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. https://doi.org/10.1136/bmj.i4919.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  CAS  PubMed  Google Scholar 

  21. Cohen J. The concepts of power analysis. In: Cohen J, editor. Statistical power analysis for the behavioral sciences. Academic Press; 1977. p. 1–17.

  22. Luo D, Wan X, Liu J, et al. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27(6):1785–805. https://doi.org/10.1177/0962280216669183.

    Article  PubMed  Google Scholar 

  23. Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135. https://doi.org/10.1186/1471-2288-14-135.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hopkins WG, Marshall SW, Batterham AM, et al. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. https://doi.org/10.1249/MSS.0b013e31818cb278.

    Article  PubMed  Google Scholar 

  25. Zacharias A, Green RA, Semciw A, et al. Atrophy of hip abductor muscles is related to clinical severity in a hip osteoarthritis population. Clin Anat. 2018;3:507–13. https://doi.org/10.1002/ca.23064.

    Article  Google Scholar 

  26. Zacharias A, Pizzari T, English DJ, et al. Hip abductor muscle volume in hip osteoarthritis and matched controls. Osteoarthr Cartil. 2016;24(10):1727–35. https://doi.org/10.1016/j.joca.2016.05.002.

    Article  CAS  Google Scholar 

  27. Allison K, Salomoni SE, Bennell KL, et al. Hip abductor muscle activity during walking in individuals with gluteal tendinopathy. Scand J Med Sci Sports. 2018;28(2):686–95. https://doi.org/10.1111/sms.12942.

    Article  CAS  PubMed  Google Scholar 

  28. Arokoski M, Arokoski J, Haara M, et al. Hip muscle strength and muscle cross sectional area in men with and without hip osteoarthritis. J Rheumatol. 2002;29(10):2185–95.

    PubMed  Google Scholar 

  29. Sims KJ, Richardson CA, Brauer SG. Investigation of hip abductor activation in subjects with clinical unilateral hip osteoarthritis. Ann Rheum Dis. 2002;61(8):687–92. https://doi.org/10.1136/ard.61.8.687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Casartelli NC, Maffiuletti NA, Item-Glatthorn JF, et al. Hip muscle weakness in patients with symptomatic femoroacetabular impingement. Osteoarthr Cartil. 2011;19(7):816–21. https://doi.org/10.1016/j.joca.2011.04.001.

    Article  CAS  Google Scholar 

  31. Dingenen B, Janssens L, Luyckx T, et al. Lower extremity muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament injured subjects. Hum Mov Sci. 2015;44:234–45. https://doi.org/10.1016/j.humov.2015.09.007.

    Article  PubMed  Google Scholar 

  32. Mendis MD, Wilson SJ, Hayes DA, et al. Hip flexor muscle size, strength and recruitment pattern in patients with acetabular labral tears compared to healthy controls. Man Ther. 2014;19(5):405–10. https://doi.org/10.1016/j.math.2014.02.006.

    Article  PubMed  Google Scholar 

  33. Sutter R, Kalberer F, Binkert CA, et al. Abductor tendon tears are associated with hypertrophy of the tensor fasciae latae muscle. Skeletal Radiol. 2013;42(5):627–33. https://doi.org/10.1007/s00256-012-1514-2.

    Article  PubMed  Google Scholar 

  34. Jacobsen JS, Kersting UG, Rathleff MS, et al. The gait pattern is not impaired in subjects with external snapping hip: a comparative cross-sectional study. BMC Musculoskelet Disord. 2013;14(1):212. https://doi.org/10.1186/1471-2474-14-212.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ganderton C, Pizzari T, Harle T, et al. A comparison of gluteus medius, gluteus minimus and tensor facia latae muscle activation during gait in post-menopausal women with and without greater trochanteric pain syndrome. J Electromyogr Kinesiol. 2017;33:39–47. https://doi.org/10.1016/j.jelekin.2017.01.004.

    Article  PubMed  Google Scholar 

  36. Flack NA, Meikle GR, Reddy M, et al. Hip abductor muscle volume in women with lateral hip pain: a case-controlled study. Surg Radiol Anat. 2012;34(9):847–55. https://doi.org/10.1007/s00276-012-0970-7.

    Article  CAS  PubMed  Google Scholar 

  37. Mastenbrook MJ, Commean PK, Hillen TJ, et al. Hip abductor muscle volume and strength differences between women with chronic hip joint pain and asymptomatic controls. J Orthop Sports Phys Ther. 2017;47(12):923–30. https://doi.org/10.2519/jospt.2017.7380.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Flaxman TE, Alkjaer T, Smale KB, et al. Differences in EMG-moment relationships between ACL-injured and uninjured adults during a weight-bearing multidirectional force control task. J Orthop Res. 2019;37(1):113–23. https://doi.org/10.1002/jor.24145.

    Article  PubMed  Google Scholar 

  39. Brown AM, Zifchock RA, Lenhoff M, et al. Hip muscle response to a fatiguing run in females with iliotibial band syndrome. Hum Mov Sci. 2019;64:181–90. https://doi.org/10.1016/j.humov.2019.02.002.

    Article  PubMed  Google Scholar 

  40. Ackland DC, Denton M, Schache AG, et al. Hip abductor muscle volumes are smaller in individuals affected by patellofemoral joint osteoarthritis. Osteoarthr Cartil. 2019;27(2):266–72. https://doi.org/10.1016/j.joca.2018.09.013.

    Article  CAS  Google Scholar 

  41. Crossley KM, Vicenzino B, Lentzos J, et al. Exercise, education, manual-therapy and taping compared to education for patellofemoral osteoarthritis: a blinded, randomised clinical trial. Osteoarthr Cartil. 2015;23(9):1457–64. https://doi.org/10.1016/j.joca.2015.04.024.

    Article  CAS  Google Scholar 

  42. Bruce SA, Phillips SK, Woledge RC. Interpreting the relation between force and cross sectional area in human muscle. Med Sci Sports Exerc. 1997;29(5):677–83. https://doi.org/10.1097/00005768-199705000-00014.

    Article  CAS  PubMed  Google Scholar 

  43. Berry DB, Padwal J, Johnson S, et al. Methodological considerations in region of interest definitions for paraspinal muscles in axial MRIs of the lumbar spine. BMC Musculoskelet Disord. 2018;19(1):135. https://doi.org/10.1186/s12891-018-2059-x.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hug F, Tucker K. Surface electromyography to study muscle coordination. In: Müller B, Wolf SI, Brueggemann G-P, Deng Z, McIntosh A, Miller F, et al., editors. Handbook of human motion. Cham: Springer International Publishing; 2017. p. 1–21.

    Google Scholar 

  45. Allison K, Wrigley TV, Vicenzino B, et al. Kinematics and kinetics during walking in individuals with gluteal tendinopathy. Clin Biomech (Bristol, Avon). 2016;32:56–63. https://doi.org/10.1016/j.clinbiomech.2016.01.003.

    Article  PubMed  Google Scholar 

  46. Allison K, Bennell KL, Grimaldi A, et al. Single leg stance control in individuals with symptomatic gluteal tendinopathy. Gait Posture. 2016;49:108–13. https://doi.org/10.1016/j.gaitpost.2016.06.020.

    Article  PubMed  Google Scholar 

  47. Pietrosimone BG, Lepley AS, Ericksen HM, et al. Neural excitability alterations after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(6):665–74. https://doi.org/10.4085/1062-6050-50.1.11.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum. 2010;40(3):250–66. https://doi.org/10.1016/j.semarthrit.2009.10.001.

    Article  PubMed  Google Scholar 

  49. Cibulka MT, Bennett J. How weakness of the tensor fascia lata and gluteus maximus may contribute to ACL injury: a new theory. Physiother Theory Pract. 2018;21:1–6. https://doi.org/10.1080/09593985.2018.1486492.

    Article  Google Scholar 

  50. Johanson ME, Radtka SA. Amplitude threshold criteria improve surface electrode specificity during walking and functional movements. Gait Posture. 2006;24(4):429–34. https://doi.org/10.1016/j.gaitpost.2005.09.011.

    Article  PubMed  Google Scholar 

  51. Merlo A, Campanini I. Applications in movement and gait analysis. In: Merletti R, Farina D, editors. Surface electromyography: physiology, engineering, and applications. IEEE Press, Wiley: IEEE Press Series on Biomedical Engineering; 2016. p. 440–59.

    Chapter  Google Scholar 

  52. Mesin L, Merletti R, Rainoldi A. Surface EMG: the issue of electrode location. J Electromyogr Kinesiol. 2009;19(5):719–26. https://doi.org/10.1016/j.jelekin.2008.07.006.

    Article  CAS  PubMed  Google Scholar 

  53. Burden A. How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. J Electromyogr Kinesiol. 2010;20(6):1023–35. https://doi.org/10.1016/j.jelekin.2010.07.004.

    Article  PubMed  Google Scholar 

  54. Besomi M, Hodges PW, Van Dieën J, Carson RG, Clancy EA, Disselhorst-Klug C, et al. Consensus for experimental design in electromyography (CEDE) project: electrode selection matrix. J Electromyogr Kinesiol. 2019;48:128–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Hodges.

Ethics declarations

Funding

This research was funded by the National Health and Medical Research Council (NHMRC) of Australia (Program Grant: APP1091302). PWH is supported by an NHMRC Senior Principal Research Fellowship (APP1102905). MB is supported by the University of Queensland Research Training Scholarship.

Conflict of Interests

Manuela Besomi, Liam Maclachlan, Rebecca Mellor, Bill T. Vicenzino, and Paul W. Hodges declare that they have no conflict interest.

Data Sharing Statement

All extracted data are available in the article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besomi, M., Maclachlan, L., Mellor, R. et al. Tensor Fascia Latae Muscle Structure and Activation in Individuals With Lower Limb Musculoskeletal Conditions: A Systematic Review and Meta-Analysis. Sports Med 50, 965–985 (2020). https://doi.org/10.1007/s40279-019-01251-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-019-01251-1

Navigation