Skip to main content
Log in

Spatial and Temporal Self-organization During CO Oxidation Over Ni

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Oscillatory behavior during CO oxidation over a Ni foil in a continuous-flow catalytic reactor has been discovered in the reaction mixture containing CO excess at atmospheric pressure in the temperature range of 500–630 °C. The oscillations are accompanied by propagation of the oxidation and reduction fronts which were recorded by a photo–video camera. Dark fronts of the oxidized state appear periodically in the upstream part of the catalyst and propagate to the downstream region in the direction of the gas flow. Reduction fronts move in the opposite direction. A mathematical model has been developed to simulate the oscillatory dynamics. The developed model simulates experimental data almost quantitatively. The origin of oscillations is connected with periodic oxidation and reduction of the nickel surface. It is shown that a precursor-mediated adsorption of CO on Ni surface is required to simulate the oscillations under reducing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Engel T, Ertl G (1979) Elementary steps in the catalytic oxidation of carbon monoxide on platinum metals. Adv Catal 28:1–78

    CAS  Google Scholar 

  2. Freund H-J, Meijer G, Scheffler M, Schlögl R, Wolf M (2011) CO oxidation as a prototypical reaction for heterogeneous processes. Angew Chem Int Ed 50:10064–10094

    Article  CAS  Google Scholar 

  3. Slinko MM, Jaeger NI (1994) Oscillatory heterogeneous catalytic systems Studies in surface sciences and catalysis. Elsevier, Amsterdam

    Google Scholar 

  4. Imbihl R, Ertl G (1995) Oscillatory kinetics in heterogeneous catalysis. Chem Rev 95:697–733

    Article  CAS  Google Scholar 

  5. Eiswirth M, Ertl G (1994) In: Kapral R, Showalter K (eds) Chemical waves and patterns. Kluwer, Dordrecht

  6. Luss D, Sheintuch M (2005) Spatiotemporal patterns in catalytic systems. Catal Today 105:254–274

    Article  CAS  Google Scholar 

  7. Imbihl R (2008) Nonlinear dynamics in catalytic reactions. In: Hasselbrink E, Lundqvist B (eds) Handbook of surface science, vol 3. Elsevier, Amsterdam, pp 341–428

    Google Scholar 

  8. Bychkov VYu, Tulenin YuP, Slinko MM, Gordienko YuA, Korchak VN (2018) New oscillating system: CO oxidation over Ni. Catal Lett 148:653–659

    Article  CAS  Google Scholar 

  9. Bychkov VYu, Tulenin YuP, Slinko MM, Gorenberg AY, Shashkin DP, Korchak VN (2020) Spatial and temporal self-organization during CO oxidation over Co. Reaction kinetics, mechanisms and catalysis (to be published)

  10. Belyaev VD, Slinko MM, Slinko MG (1976) In: Proceedings of the 6th international congress on catalysis, London

  11. Kurtanjek Z, Sheintuch M, Luss D (1980) Surface state and kinetic oscillations in the oxidation of hydrogen on nickel. J Catal 66:11–27

    Article  CAS  Google Scholar 

  12. Bychkov VY, Tyulenin YP, Korchak VN, Aptekar EL (2006) Study of nickel catalyst in oscillating regime of methane oxidation by means of gravimetry and mass-spectrometry. Appl Catal A 3042:21–29

    Article  CAS  Google Scholar 

  13. Bychkov VY, Tyulenin YP, Slinko MM, Korchak VN (2009) Nonlinear behavior during methane and ethane oxidation over Ni, Co and Pd catalysts. Surf Sci 603:1680–1689

    Article  CAS  Google Scholar 

  14. Kaichev VV, Saraev AA, Gladky AYu, Prosvirin IP, Blume R, Teschner V, Hävecker V, Knop-Gericke A, Schlögl R, Bukhtiyarov VI (2017) Reversible bulk oxidation of Ni foil during oscillatory catalytic oxidation of propane: a novel type of spatiotemporal self-organization. Phys Rev Lett 119:026001

    Article  CAS  Google Scholar 

  15. Lobban L, Luss D (1989) Spatial temperature oscillations during hydrogen oxidation on a nickel foil. J Phys Chem 93:6530–6533

    Article  CAS  Google Scholar 

  16. van Rijn R, Balmes O, Felici R, Gustafson J, Wermeille D, Westerström R, Lundgren E, Frenken JWM (2010) Comment on “CO oxidation on Pt-group metals from ultrahigh vacuum to near atmospheric pressures. 2. Palladium and platinum”. J Phys Chem C 114:6875–6876

    Article  CAS  Google Scholar 

  17. Gao F, Wang Y, Goodman DW (2010) Reply to Comment on “CO oxidation on Pt group metals from ultrahigh vacuum to near atmospheric pressures II Palladium and platinum”. J Phys Chem C 114:6874

    Article  CAS  Google Scholar 

  18. Gao F, Wang Y, Cai Y, Goodman DW (2009) CO oxidation on Pt-group metals from ultrahigh vacuum to near atmospheric pressures. 2. Palladium and platinum. J Phys Chem C 113:174–181

    Article  CAS  Google Scholar 

  19. Makeev AG, Slinko MM, Luss D (2019) Mathematical modeling of oscillating CO oxidation on Pt-group metals at near atmospheric pressure: activity of metallic and oxidized surfaces. Appl Catal A 57:127–136

    Article  CAS  Google Scholar 

  20. Hendriksen BLM, Bobaru SC, Frenken JWM (2005) Bistability and oscillations in CO oxidation studied with scanning tunnelling microscopy inside a reactor. Catal Today 105:234–243

    Article  CAS  Google Scholar 

  21. Knudsen J, Merte LR, Peng GW, Vang RT, Resta A, Lægsgaard E, Andersen JN, Mavrikakis M, Besenbacher F (2010) Low-temperature CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy. ACS Nano 4:4380–4387

    Article  CAS  Google Scholar 

  22. Peng GW, Merte LR, Knudsen J, Vang RT, Lægsgaard E, Besenbacher F, Mavrikakis M (2010) On the mechanism of low-temperature CO oxidation on Ni(111) and NiO(111) surfaces. J Phys Chem C 114:21579–21584

    Article  CAS  Google Scholar 

  23. Slinko MM (2010) Oscillating reactions in heterogeneous catalysis: what new information can be obtained about reaction mechanisms? Catal Today 153:38–45

    Article  CAS  Google Scholar 

  24. McAdam DJ, Geil GW (1942) Rate of oxidation of typical nonferrous metals as determined by interference colors of oxide films. J Res Natl Bur Stand 28:593–635

    Article  CAS  Google Scholar 

  25. Stuckless JT, Wartnaby CE, Al-Sarraf N, StJB D-W, Kovar M, King DA (1997) Oxygen chemisorption and oxide film growth on Ni{100}, {110}, and {111}: sticking probabilities and microcalorimetric adsorption heats. J Chem Phys 106:2012–2030

    Article  CAS  Google Scholar 

  26. Sales BC, Turner JE, Maple MB (1982) Oscillatory oxidation of CO over Pt, Pd and Ir catalysts: theory. Surf Sci 114:381–394

    Article  CAS  Google Scholar 

  27. Stuckless JT, Al-Sarraf N, Wartnaby C, King DA (1993) Calorimetric heats of adsorption for CO on nickel single crystal surfaces. J Chem Phys 99:2202–2212

    Article  CAS  Google Scholar 

  28. Feigerle CS, Desai SR, Overbury SH (1990) The kinetics of CO desorption from Ni(110). J Chem Phys 93:787–794

    Article  CAS  Google Scholar 

  29. Kisliuk P (1957) The sticking probabilities of gases chemisorbed on the surfaces of solids. J Phys Chem Solids 3:95–101

    Article  CAS  Google Scholar 

  30. Yang WS, Xiang HW, Li YW, Sun YH (2000) Micro-kinetic analysis and Monte Carlo simulation in methane partial oxidation into synthesis gas. Cat Today 61:237–242

    Article  CAS  Google Scholar 

  31. Monnerat B, Kiwi-Minsker L, Renken A (2003) Mathematical modelling of the unsteady-state oxidation of nickel gauze catalyst. Chem Eng Sci 58:4911–4919

    Article  CAS  Google Scholar 

  32. Munôz-Marquez MA, Tanner RE, Woodruff DP (2004) Surface and subsurface oxide formation on Ni(100) and Ni(111). Surf Sci 565:1–13

    Article  CAS  Google Scholar 

  33. Makeev AG, Peskov NV, Semendyaeva NL, Slinko MM, Bychkov VYu, Korchak VN (2019) Mathematical modeling of oscillations during CO oxidation on Ni under reducing conditions. Chem Eng Sci 207:644–652

    Article  CAS  Google Scholar 

  34. Behm RJ, Ertl G, Penka V (1985) Adlayer geometry and structural effects in the CO/Ni(110) system. Surf Sci 160:387–399

    Article  CAS  Google Scholar 

  35. Labohm F, Gijzeman OLJ, Geus JW (1983) The interaction of oxygen with Ni(111) and the reduction of the surface oxide by carbon monoxide and by hydrogen. Surf Sci 135:409–427

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Russian Science Foundation (Grant N 17-13-01057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina M. Slinko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 703 kb)

Supplementary material 2 (MP4 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makeev, A.G., Peskov, N.V., Slinko, M.M. et al. Spatial and Temporal Self-organization During CO Oxidation Over Ni. Top Catal 63, 49–57 (2020). https://doi.org/10.1007/s11244-019-01214-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01214-w

Keywords

Navigation