Skip to main content
Log in

Effect of La Addition on the Performance of Three-Way Catalysts Containing Palladium and Rhodium

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Three-way catalysts containing palladium and/or rhodium were prepared using γ­Al2O3 doped with lanthanum oxide as a support. All the samples were obtained by an incipient wetness impregnation of the support with an aqueous solution of nitrates. In order to investigate the metal–support interaction, the support was additionally calcined at 800 °C before the impregnation procedure. Characterization of the support thermally treated within a range of 600–1000 °C by low-temperature nitrogen absorption, X-ray diffraction analysis, and electron paramagnetic resonance spectroscopy has revealed that the treatment conditions strongly affect the textural properties, the phase composition and the concentration of electron-donor sites on the surface of the support. Deposition of metals by the impregnation of initial support with a joint solution of Pd and Rh nitrates has led to formation of small Pd–Rh alloyed nanoparticles with strong metal–metal interaction, which was confirmed by a testing reaction of ethane hydrogenolysis. No alloy formation was observed in the case of mechanical mixing of the separately prepared Pd-only and Rh-only catalysts as well as in the case of preliminary calcined support impregnated with a joint solution of Pd and Rh nitrates. Bimetallic Pd–Rh catalyst of alloyed type was shown to be the most promising in terms of catalytic performance and thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Matsumoto S (1997) Recent advances in automobile exhaust catalyst. Catal Survey Japan 1:111–117. https://doi.org/10.1023/a:1019044022843

    Article  CAS  Google Scholar 

  2. Gandhi HS, Graham GW, McCabe RW (2003) Automotive exhaust catalysis. J Catal 216:433–442. https://doi.org/10.1016/s0021-9517(02)00067-2

    Article  CAS  Google Scholar 

  3. Twigg MV (2005) Controlling automotive exhaust emissions: successes and underlying science. Philos T R Soc A 363:1013–1033. https://doi.org/10.1098/rsta.2005.1547

    Article  CAS  Google Scholar 

  4. Matsumoto S (2007) Advances in automobile exhaust catalyst. Stud Surf Sci Catal 172:27–34

    CAS  Google Scholar 

  5. Bera P, Hegde MS (2010) Recent advances in auto exhaust catalysis. J Indian Inst Sci 90:299–325

    CAS  Google Scholar 

  6. Heck RM, Farrauto RJ, Gulati ST (2009) Catalytic air pollution control. Wiley, New York. https://doi.org/10.1002/9781118397749

    Book  Google Scholar 

  7. Taylor KC (1984) Automobile catalytic converters. Advances in comparative and environmental physiology. Advances in comparative and environmental physiology. Springer, Berlin, pp 119–170. https://doi.org/10.1007/978-3-642-93247-2_2

    Chapter  Google Scholar 

  8. Fornasiero P, Dimonte R, Rao GR, Kaspar J, Meriani S, Trovarelli A, Graziani M (1995) Rh-loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural-properties. J Catal 151:168–177. https://doi.org/10.1006/jcat.1995.1019

    Article  CAS  Google Scholar 

  9. Vidmar P, Fornasiero P, Kašpar J, Gubitosa G, Graziani M (1997) Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide. J Catal 171:160–168. https://doi.org/10.1006/jcat.1997.1784

    Article  CAS  Google Scholar 

  10. Vlaic G, Fornasiero P, Geremia S, Kašpar J, Graziani M (1997) Relationship between the zirconia-promoted reduction in the Rh-loaded Ce0.5Zr0.5O2 mixed oxide and the Zr–O local structure. J Catal 168:386–392. https://doi.org/10.1006/jcat.1997.1644

    Article  CAS  Google Scholar 

  11. Fornasiero P, Kašpar J, Graziani M (1999) On the rate determining step in the reduction of CeO2–ZrO2 mixed oxides. Appl Catal B 22:L11–L14. https://doi.org/10.1016/s0926-3373(99)00038-7

    Article  CAS  Google Scholar 

  12. Graham GW, Jen HW, Chun W, McCabe RW (1999) High-temperature-aging-induced encapsulation of metal particles by support materials: comparative results for Pt, Pd, and Rh on cerium–zirconium mixed oxides. J Catal 182:228–233. https://doi.org/10.1006/jcat.1998.2328

    Article  CAS  Google Scholar 

  13. Kašpar J, Fornasiero P, Graziani M (1999) Use of CeO2-based oxides in the three-way catalysis. Catal Today 50:285–298. https://doi.org/10.1016/s0920-5861(98)00510-0

    Article  Google Scholar 

  14. Shelef M, McCabe RW (2000) Twenty-five years after introduction of automotive catalysts: what next? Catal Today 62:35–50. https://doi.org/10.1016/s0920-5861(00)00407-7

    Article  CAS  Google Scholar 

  15. Di Monte R, Fornasiero P, Kašpar J, Graziani M, Gatica JM, Bernal S, Gómez-Herrero A (2000) Stabilisation of nanostructured Ce0.2Zr0.8O2 solid solution by impregnation on Al2O3: a suitable method for the production of thermally stable oxygen storage/release promoters for three-way catalysts. Chem Commun 21:2167–2168. https://doi.org/10.1039/b006674p

    Article  Google Scholar 

  16. Kašpar J, Fornasiero P, Hickey N (2003) Automotive catalytic converters: current status and some perspectives. Catal Today 77:419–449. https://doi.org/10.1016/s0920-5861(02)00384-x

    Article  Google Scholar 

  17. Maillet T, Solleau C, Barbier J, Duprez D (1997) Oxidation of carbon monoxide, propene, propane and methane over a Pd/Al2O3 catalyst. Effect of the chemical state of Pd. Appl Catal B 14:85–95. https://doi.org/10.1016/s0926-3373(97)00014-3

    Article  CAS  Google Scholar 

  18. Datye AK, Bravo J, Nelson TR, Atanasova P, Lyubovsky M, Pfefferle L (2000) Catalyst microstructure and methane oxidation reactivity during the Pd ↔ PdO transformation on alumina supports. Appl Catal A 198:179–196. https://doi.org/10.1016/s0926-860x(99)00512-8

    Article  CAS  Google Scholar 

  19. Monteiro RS, Dieguez LC, Schmal M (2001) The role of Pd precursors in the oxidation of carbon monoxide over Pd/Al2O3 and Pd/CeO2/Al2O3 catalysts. Catal Today 65:77–89. https://doi.org/10.1016/S0920-5861(00)00547-2

    Article  CAS  Google Scholar 

  20. Matsouka V, Konsolakis M, Yentekakis IV, Papavasiliou A, Tsetsekou A, Boukos N (2011) Thermal aging behavior of Pt-only TWC converters under simulated exhaust conditions: effect of rare earths (CeO2, La2O3) and alkali (Na) modifiers. Top Catal 54:1124–1134. https://doi.org/10.1007/s11244-011-9734-6

    Article  CAS  Google Scholar 

  21. Busca G, Finocchio E, Escribano VS (2012) Infrared studies of CO oxidation by oxygen and by water over Pt/Al2O3 and Pd/Al2O3 catalysts. Appl Catal B 113–114:172–179. https://doi.org/10.1016/j.apcatb.2011.11.035

    Article  CAS  Google Scholar 

  22. Fan J, Wu X, Yang L, Weng D (2007) The SMSI between supported platinum and CeO2–ZrO2–La2O3 mixed oxides in oxidative atmosphere. Catal Today 126:303–312. https://doi.org/10.1016/j.cattod.2007.06.005

    Article  CAS  Google Scholar 

  23. Beck IE, Bukhtiyarov VI, Pakharukov IY, Zaikovsky VI, Kriventsov VV, Parmon VN (2009) Platinum nanoparticles on Al2O3: correlation between the particle size and activity in total methane oxidation. J Catal 268:60–67. https://doi.org/10.1016/j.jcat.2009.09.001

    Article  CAS  Google Scholar 

  24. Kwak JH, Hu J, Mei D, Yi CW, Kim DH, Peden CHF, Allard LF, Szanyi J (2009) Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325:1670–1673. https://doi.org/10.1126/science.1176745

    Article  CAS  PubMed  Google Scholar 

  25. Shelef M, Graham GW (2006) Why rhodium in automotive three-way catalysts? Catal Rev 36:433–457. https://doi.org/10.1080/01614949408009468

    Article  Google Scholar 

  26. Van CZ, Dettling JC (1987) Rhodium–support interactions in automotive exhaust catalysts. In: Catalysis and automotive pollution control, proceedings of the first international symposium (CAPOC I). Stud Surf Sci Catal, pp 369–386. https://doi.org/10.1016/s0167-2991(09)60436-5

    Chapter  Google Scholar 

  27. Ciuparu D (2000) Pd–Ce interactions and adsorption properties of palladium: CO and NO TPD studies over Pd–Ce/Al2O3 catalysts. Appl Catal B 26:241–255. https://doi.org/10.1016/s0926-3373(00)00130-2

    Article  CAS  Google Scholar 

  28. Boronin AI, Slavinskaya EM, Danilova IG, Gulyaev RV, Amosov YI, Kuznetsov PA, Polukhina IA, Koscheev SV, Zaikovskii VI, Noskov AS (2009) Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal Today 144:201–211. https://doi.org/10.1016/j.cattod.2009.01.035

    Article  CAS  Google Scholar 

  29. Luo J-Y, Meng M, Xian H, Tu Y-B, Li X-G, Ding T (2009) The nanomorphology-controlled palladium–support interaction and the catalytic performance of Pd/CeO2 catalysts. Catal Lett 133:328–333. https://doi.org/10.1007/s10562-009-0194-6

    Article  CAS  Google Scholar 

  30. Hinokuma S, Fujii H, Okamoto M, Ikeue K, Machida M (2010) Metallic Pd nanoparticles formed by Pd–O–Ce interaction: a reason for sintering-induced activation for CO oxidation. Chem Mater 22:6183–6190. https://doi.org/10.1021/cm102355x

    Article  CAS  Google Scholar 

  31. Zheng T, He J, Zhao Y, Xia W, He J (2014) Precious metal–support interaction in automotive exhaust catalysts. J Rare Earths 32:97–107. https://doi.org/10.1016/s1002-0721(14)60038-7

    Article  CAS  Google Scholar 

  32. Hegde MS, Bera P (2015) Noble metal ion substituted CeO2 catalysts: electronic interaction between noble metal ions and CeO2 lattice. Catal Today 253:40–50. https://doi.org/10.1016/j.cattod.2015.03.035

    Article  CAS  Google Scholar 

  33. Alikin EA, Vedyagin AA (2016) High Temperature interaction of rhodium with oxygen storage component in three-way catalysts. Top Catal 59:1033–1038. https://doi.org/10.1007/s11244-016-0585-z

    Article  CAS  Google Scholar 

  34. Vedyagin AA, Volodin AM, Kenzhin RM, Stoyanovskii VO, Shubin YV, Plyusnin PE, Mishakov IV (2017) Effect of metal–metal and metal–support interaction on activity and stability of Pd–Rh/alumina in CO oxidation. Catal Today 293–294:73–81. https://doi.org/10.1016/j.cattod.2016.10.010

    Article  CAS  Google Scholar 

  35. Vedyagin AA, Volodin AM, Stoyanovskii VO, Mishakov IV, Medvedev DA, Noskov AS (2011) Characterization of active sites of Pd/Al2O3 model catalysts with low Pd content by luminescence, EPR and ethane hydrogenolysis. Appl Catal B 103:397–403. https://doi.org/10.1016/j.apcatb.2011.02.002

    Article  CAS  Google Scholar 

  36. Vedyagin A, Volodin A, Kenzhin R, Chesnokov V, Mishakov I (2016) CO oxidation over Pd/ZrO2 catalysts: role of support′s donor sites. Molecules 21:1289. https://doi.org/10.3390/molecules21101289

    Article  CAS  PubMed Central  Google Scholar 

  37. Vedyagin AA, Volodin AM, Kenzhin RM, Stoyanovskii VO, Rogov VA, Kriventsov VV, Mishakov IV (2018) The role of chemisorbed water in formation and stabilization of active sites on Pd/alumina oxidation catalysts. Catal Today 307:102–110. https://doi.org/10.1016/j.cattod.2017.01.033

    Article  CAS  Google Scholar 

  38. Stoyanovskii VO, Vedyagin AA, Aleshina GI, Volodin AM, Noskov AS (2009) Characterization of Rh/Al2O3 catalysts after calcination at high temperatures under oxidizing conditions by luminescence spectroscopy and catalytic hydrogenolysis. Appl Catal B 90:141–146. https://doi.org/10.1016/j.apcatb.2009.03.003

    Article  CAS  Google Scholar 

  39. Alikin EA, Denisov SP, Vedyagin AA (2018) Partial regeneration of model TWC after high-temperature aging on engine bench. Top Catal 62:324–330. https://doi.org/10.1007/s11244-018-1114-z

    Article  CAS  Google Scholar 

  40. Nunan JG, Williamson WB, Robota HJ, Henk MG (1995) Impact of Pt–Rh and Pd–Rh interactions on performance of bimetal catalysts. SAE Tech Paper 950258. https://doi.org/10.4271/950258

    Article  Google Scholar 

  41. Araya P, Díaz V (1997) Synergism in the reaction of CO with O2 on bimetallic Rh–Pd catalysts supported on silica. J Chem Soc Faraday Trans 93:3887–3891. https://doi.org/10.1039/a703704j

    Article  CAS  Google Scholar 

  42. Renzas JR, Huang W, Zhang Y, Grass ME, Hoang DT, Alayoglu S, Butcher DR, Tao F, Liu Z, Somorjai GA (2011) Rh1 – xPdx nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. Phys Chem Chem Phys 13:2556–2562. https://doi.org/10.1039/c0cp01858a

    Article  CAS  PubMed  Google Scholar 

  43. Renzas JR, Huang W, Zhang Y, Grass ME, Somorjai GA (2010) Rh1–xPdx nanoparticle composition dependence in CO oxidation by NO. Catal Lett 141:235–241. https://doi.org/10.1007/s10562-010-0462-5

    Article  CAS  Google Scholar 

  44. Vedyagin AA, Gavrilov MS, Volodin AM, Stoyanovskii VO, Slavinskaya EM, Mishakov IV, Shubin YV (2013) Catalytic purification of exhaust gases over Pd–Rh alloy catalysts. Top Catal 56:1008–1014. https://doi.org/10.1007/s11244-013-0064-8

    Article  CAS  Google Scholar 

  45. Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Slavinskaya EM, Mishakov IV, Plyusnin PE, Shubin YV (2014) Stabilization of active sites in alloyed Pd–Rh catalysts on γ­Al2O3 support. Catal Today 238:80–86. https://doi.org/10.1016/j.cattod.2014.02.056

    Article  CAS  Google Scholar 

  46. Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Plyusnin PE, Shubin YV, Mishakov IV (2017) Effect of alumina phase transformation on stability of low-loaded Pd–Rh catalysts for CO oxidation. Top Catal 60:152–161. https://doi.org/10.1007/s11244-016-0726-4

    Article  CAS  Google Scholar 

  47. Vedyagin AA, Shubin YV, Kenzhin RM, Plyusnin PE, Stoyanovskii VO, Volodin AM (2018) Prospect of using nanoalloys of partly miscible rhodium and palladium in three-way catalysis. Top Catal 62:305–314. https://doi.org/10.1007/s11244-018-1093-0

    Article  CAS  Google Scholar 

  48. Ma L-P, Bart H-J, Ning P, Zhang A, Wu G, Zengzang Z (2009) Kinetic study of three-way catalyst of automotive exhaust gas: modeling and application. Chem Eng J 155:241–247. https://doi.org/10.1016/j.cej.2009.07.045

    Article  CAS  Google Scholar 

  49. Kang SB, Han SJ, Nam I-S, Cho BK, Kim CH, Oh SH (2014) Detailed reaction kinetics for double-layered Pd/Rh bimetallic TWC monolith catalyst. Chem Eng J 241:273–287. https://doi.org/10.1016/j.cej.2013.12.039

    Article  CAS  Google Scholar 

  50. Vedyagin AA, Stoyanovskii VO, Plyusnin PE, Shubin YV, Slavinskaya EM, Mishakov IV (2018) Effect of metal ratio in alumina-supported Pd–Rh nanoalloys on its performance in three way catalysis. J Alloys Compd 749:155–162. https://doi.org/10.1016/j.jallcom.2018.03.250

    Article  CAS  Google Scholar 

  51. Yang J, Wang Q, Wang T, Liang Y (2016) Rapid preparation process, structure and thermal stability of lanthanum doped alumina aerogels with a high specific surface area. RSC Adv 6:26271–26279. https://doi.org/10.1039/c5ra28053b

    Article  CAS  Google Scholar 

  52. Barrera A, Fuentes S, Díaz G, Gómez-Cortés A, Tzompantzi F, Molina JC (2012) Methane oxidation over Pd catalysts supported on binary Al2O3–La2O3 oxides prepared by the sol–gel method. Fuel 93:136–141. https://doi.org/10.1016/j.fuel.2011.11.049

    Article  CAS  Google Scholar 

  53. Li M, Weng D, Wu X, Wan J, Wang B (2013) Importance of re-oxidation of palladium by interaction with lanthana for propane combustion over Pd/Al2O3 catalyst. Catal Today 201:19–24. https://doi.org/10.1016/j.cattod.2012.03.047

    Article  CAS  Google Scholar 

  54. Zhou Y, Wang Z, Liu C (2015) Perspective on CO oxidation over Pd-based catalysts. Catal Sci Technol 5:69–81. https://doi.org/10.1039/c4cy00983e

    Article  CAS  Google Scholar 

  55. Lupescu JA, Schwank JW, Dahlberg KA, Seo CY, Fisher GB, Peczonczyk SL, Rhodes K, Jagner MJ, Haack LP (2016) Pd model catalysts: effect of aging environment and lean redispersion. Appl Catal B 183:343–360. https://doi.org/10.1016/j.apcatb.2015.10.018

    Article  CAS  Google Scholar 

  56. Stoyanovskii VO, Vedyagin AA, Volodin AM, Kenzhin RM, Shubin YV, Plyusnin PE, Mishakov IV (2017) Peculiarity of Rh bulk diffusion in La-doped alumina and its impact on CO oxidation over Rh/Al2O3. Catal Commun 97:18–22. https://doi.org/10.1016/j.catcom.2017.04.013

    Article  CAS  Google Scholar 

  57. Stoyanovskii VO, Vedyagin AA, Volodin AM, Kenzhin RM, Bespalko YN, Plyusnin PE, Shubin YV (2018) Optical spectroscopy of Rh3+ ions in the lanthanum–aluminum oxide systems. J Lumin 204:609–617. https://doi.org/10.1016/j.jlumin.2018.08.070

    Article  CAS  Google Scholar 

  58. Stoyanovskii VO, Vedyagin AA, Volodin AM, Kenzhin RM, Slavinskaya EM, Plyusnin PE, Shubin YV (2018) Optical spectroscopy methods in the estimation of the thermal stability of bimetallic Pd–Rh/Al2O3 three-way catalysts. Top Catal 62:296–304. https://doi.org/10.1007/s11244-018-1112-1

    Article  CAS  Google Scholar 

  59. Nefedov VI (1984) X-ray photoelectron spectroscopy of chemical compounds: handbook. Khimiya, Moscow

    Google Scholar 

  60. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie

    Google Scholar 

  61. Vedyagin AA, Stoyanovskii VO, Kenzhin RM, Slavinskaya EM, Plyusnin PE, Shubin YV (2019) Purification of gasoline exhaust gases using bimetallic Pd–Rh/δ-Al2O3 catalysts. Reac Kinet Mech Catal 127:137–148. https://doi.org/10.1007/s11144-019-01573-1

    Article  CAS  Google Scholar 

  62. Sinfelt J, Yates DJC (1967) Catalytic hydrogenolysis of ethane over the noble metals of Group VIII. J Catal 8:82–90. https://doi.org/10.1016/0021-9517(67)90284-9

    Article  CAS  Google Scholar 

  63. Yates D, Sinfelt JH (1967) The catalytic activity of rhodium in relation to its state of dispersion. J Catal 8:348–358. https://doi.org/10.1016/0021-9517(67)90331-4

    Article  CAS  Google Scholar 

  64. Sinfelt J (1972) Kinetics of ethane hydrogenolysis. J Catal 27:468–471. https://doi.org/10.1016/0021-9517(72)90188-1

    Article  CAS  Google Scholar 

  65. Vedyagin AA, Volodin AM, Kenzhin RM, Stoyanovskii VO, Rogov VA, Medvedev DA, Mishakov IV (2017) Characterization and study on the thermal aging behavior of palladium–alumina catalysts. J Therm Anal Calorim 130:1865–1874. https://doi.org/10.1007/s10973-017-6530-y

    Article  CAS  Google Scholar 

  66. Peuckert M (1985) XPS study on surface and bulk palladium oxide, its thermal stability, and a comparison with other noble metal oxides. J Phys Chem 89:2481–2486. https://doi.org/10.1021/j100258a012

    Article  CAS  Google Scholar 

  67. Fleisch TH, Zajac GW, Schreiner JO, Mains GJ (1986) An XPS study of the UV photoreduction of transition and noble metal oxides. Appl Surf Sci 26:488–497. https://doi.org/10.1016/0169-4332(86)90120-0

    Article  CAS  Google Scholar 

  68. Fox EB, Lee AF, Wilson K, Song C (2008) In-situ XPS study on the reducibility of Pd-promoted Cu/CeO2 catalysts for the oxygen-assisted water–gas-shift reaction. Top Catal 49:89–96. https://doi.org/10.1007/s11244-008-9063-6

    Article  CAS  Google Scholar 

  69. Devener BV, Anderson SL, Shimizu T, Wang H, Nabity J, Engel J, Yu J, Wickham D, Williams S (2009) In situ generation of Pd/PdO nanoparticle methane combustion catalyst: correlation of particle surface chemistry with ignition. J Phys Chem C 113:20632–20639. https://doi.org/10.1021/jp904317y

    Article  CAS  Google Scholar 

  70. Mason MG (1983) Electronic structure of supported small metal clusters. Phys Rev B 27:748–762. https://doi.org/10.1103/PhysRevB.27.748

    Article  CAS  Google Scholar 

  71. Beketov G, Heinrichs B, Pirard JP, Chenakin S, Kruse N (2013) XPS structural characterization of Pd/SiO2 catalysts prepared by cogelation. Appl Surf Sci 287:293–298. https://doi.org/10.1016/j.apsusc.2013.09.145

    Article  CAS  Google Scholar 

  72. Weng X, Shi B, Liu A, Sun J, Xiong Y, Wan H, Zheng S, Dong L, Chen Y-w (2019) Highly dispersed Pd/modified-Al2O3 catalyst on complete oxidation of toluene: role of basic sites and mechanism insight. Appl Surf Sci 497:143747. https://doi.org/10.1016/j.apsusc.2019.143747

    Article  CAS  Google Scholar 

  73. Weng-Sieh Z, Gronsky R, Bell AT (1997) Microstructural evolution of γ-alumina-supported Rh upon aging in air. J Catal 170:62–74. https://doi.org/10.1006/jcat.1997.1738

    Article  CAS  Google Scholar 

  74. Suhonen S, Valden M, Hietikko M, Laitinen R, Savimäki A, Härkönen M (2001) Effect of Ce–Zr mixed oxides on the chemical state of Rh in alumina supported automotive exhaust catalysts studied by XPS and XRD. Appl Catal A 218:151–160. https://doi.org/10.1016/s0926-860x(01)00636-6

    Article  CAS  Google Scholar 

  75. Tolia AA, Smiley RJ, Delgass WN, Takoudis CG, Weaver MJ (1994) Surface oxidation of rhodium at ambient pressures as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies. J Catal 150:56–70. https://doi.org/10.1006/jcat.1994.1322

    Article  CAS  Google Scholar 

  76. Wanger CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp., Eden Prairie

    Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of subsidizing agreement of October 23, 2017 (No. 14.581.21.0028, unique agreement identifier RFMEFI58117 × 0028) of the Federal Target Program “Research and development in priority directions of the progress of the scientific and technological complex of Russia for the years 2014–2020. Characterization of the samples was performed using the equipment of the Center of Collective Use “National Center of Catalysts Research”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Vedyagin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedyagin, A.A., Kenzhin, R.M., Tashlanov, M.Y. et al. Effect of La Addition on the Performance of Three-Way Catalysts Containing Palladium and Rhodium. Top Catal 63, 152–165 (2020). https://doi.org/10.1007/s11244-019-01213-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01213-x

Keywords

Navigation