Skip to main content

Advertisement

Log in

Improved Elevated Temperature Properties in Al-13%Si Piston Alloys by Mo Addition

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Eutectic Al-13%Si alloys are widely used in the automotive industry for manufacturing components, such as pistons and cylinder heads. To reduce greenhouse gas emissions and enhance the engine efficiency, their service temperature keeps increasing to 250-350 °C, leading to the deterioration of their mechanical properties and the creep resistance. In the present work, Mo was further added to Mn-containing Al-13%Si piston alloys aiming at improving the overall properties at elevated temperatures. Compared with the Mn-containing base alloy, Mo further enhanced the precipitation of dispersoids by expanding the dispersoid zone and restricting the dispersoid-free zone after the proper precipitation treatment (520 °C/12 h), resulting in a remarkable improvement in the yield strength at both room temperature and 300 °C, as well as the creep resistance at 300 °C. Furthermore, the beneficial effect of Mo addition on the improved yield strength and creep resistance was especially prominent during long-term thermal exposure (up to 1000 h at 300 °C) due to the synergistic effect of thermally stable dispersoids and the retardation of the gradual fragmentation and spheroidization of Si particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Zeren, The Effect of Heat-Treatment on Aluminum-Based Piston Alloys, Mater. Des., 2007, 28(9), p 2511–2517

    Article  CAS  Google Scholar 

  2. Y. Wang, H. Liao, Y. Wu, and J. Yang, Effect of Si Content on Microstructure and Mechanical Properties of Al-Si-Mg Alloys, Mater. Des., 2014, 53, p 634–638

    Article  CAS  Google Scholar 

  3. K. Liu and X.G. Chen, Improvement in Elevated-Temperature Properties of Al-13% Si Piston Alloys by Dispersoid Strengthening via Mn Addition, J. Mater. Res., 2018, 33(20), p 3430–3438

    Article  CAS  Google Scholar 

  4. Z. Qian, X.F. Liu, D.G. Zhao, and G.H. Zhang, Effects of Trace Mn Addition on the Elevated Temperature Tensile Strength and Microstructure of a Low-Iron Al-Si Piston Alloy, Mater. Lett., 2008, 62(14), p 2146–2149

    Article  Google Scholar 

  5. Z. Asghar, G. Requena, and E. Boller, Three-Dimensional Rigid Multiphase Networks Providing High-Temperature Strength to Cast AlSi10Cu5Ni1-2 Piston Alloys, Acta Mater., 2011, 59(16), p 6420–6432

    Article  CAS  Google Scholar 

  6. Z. Asghar, G. Requena, and F. Kubel, The role of Ni and Fe Aluminides on the Elevated Temperature Strength of an AlSi12 Alloy, Mater. Sci. Eng. A, 2010, 527(21), p 5691–5698

    Article  Google Scholar 

  7. V. Abouei, H. Saghafian, S.G. Shabestari, and M. Zarghami, Effect of Fe-Rich Intermetallics on the Wear Behavior of Eutectic Al-Si Piston Alloy (LM13), Mater. Des., 2010, 31(7), p 3518–3524

    Article  CAS  Google Scholar 

  8. J. Feng, B. Ye, L. Zuo, R. Qi, Q. Wang, H. Jiang, R. Huang, and W. Ding, Effects of Ni Content on Low Cycle Fatigue and Mechanical Properties of Al-12Si-0.9Cu-0.8 Mg-xNi at 350 & #x00B0;C, Mater. Sci. Eng. A, 2017, 706, p 27–37

    Article  CAS  Google Scholar 

  9. Y. Yang, K.L. Yu, Y.G. Li, D.G. Zhao, and X.F. Liu, Evolution of Nickel-Rich Phases in Al-Si-Cu-Ni-Mg Piston Alloys with Different Cu Additions, Mater. Des., 2012, 33, p 220–225

    Article  CAS  Google Scholar 

  10. Z. Asghar, G. Requena, G.H. Zahid, and D. Rafiud, Effect of Thermally Stable Cu- and Mg-Rich Aluminides on the High Temperature Strength of an AlSi12CuMgNi Alloy, Mater. Charact., 2014, 88, p 80–85

    Article  CAS  Google Scholar 

  11. G. Requena, G. Garcés, M. Rodríguez, T. Pirling, and P. Cloetens, 3D Architecture and Load Partition in Eutectic Al-Si Alloys, Adv. Eng. Mater., 2009, 11(12), p 1007–1014

    CAS  Google Scholar 

  12. S.G. Shabestari and R. Gholizadeh, Assessment of Intermetallic Compound Formation During Solidification of Al-Si Piston Alloys Through Thermal Analysis Technique, Mater. Sci. Technol., 2012, 28(2), p 156–164

    Article  CAS  Google Scholar 

  13. R. Fernandez-Gutierrez and G.C. Requena, The Effect of Spheroidisation Heat Treatment on the Creep Resistance of a Cast AlSi12CuMgNi Piston Alloy, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2014, 598, p 147–153

    Article  CAS  Google Scholar 

  14. V. Páramo, R. Colás, E. Velasco, and S. Valtierra, Spheroidization of the Al-Si Eutectic in a Cast Aluminum Alloy, J. Mater. Eng. Perform., 2000, 9(6), p 616–622

    Article  Google Scholar 

  15. E. Arzt and E. Gohring, A Model for Dispersion Strengthening of Ordered Intermetallics at High Temperatures, Acta Mater., 1998, 46(18), p 6575–6584

    Article  CAS  Google Scholar 

  16. H. Liao, Y. Tang, X. Suo, G. Li, Y. Hu, U.S. Dixit, and P. Petrov, Dispersoid Particles Precipitated During the Solutionizing Course of Al-12 wt%Si-4 wt%Cu-1.2 wt%Mn Alloy and Their Influence on High Temperature Strength, Mater. Sci. Eng. A, 2017, 699, p 201–209

    Article  CAS  Google Scholar 

  17. G. Han, W.Z. Zhang, G.H. Zhang, Z.J. Peng, and Y.J. Wang, High-Temperature Mechanical Properties and Fracture Mechanisms of Al-Si Piston Alloy Reinforced with In Situ TiB2 Particles, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2015, 633, p 161–168

    Article  CAS  Google Scholar 

  18. A.R. Farkoosh, X.G. Chen, and M. Pekguleryuz, Dispersoid Strengthening of a High Temperature Al-Si-Cu-Mg Alloy via Mo Addition, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2015, 620, p 181–189

    Article  Google Scholar 

  19. M. Tocci, R. Donnini, G. Angella, and A. Pola, Effect of Cr and Mn Addition and Heat Treatment on AlSi3Mg Casting Alloy, Mater. Charact., 2017, 123, p 75–82

    Article  CAS  Google Scholar 

  20. R. Chen, Q. Xu, Z. Jia, and B. Liu, Precipitation Behavior and Hardening Effects of Si-Containing Dispersoids in Al-7Si-Mg Alloy During Solution Treatment, Mater. Des., 2016, 90, p 1059–1068

    Article  CAS  Google Scholar 

  21. K. Liu and X.G. Chen, Development of Al-Mn-Mg 3004 Alloy for Applications at Elevated Temperature via Dispersoid Strengthening, Mater. Des., 2015, 84, p 340–350

    Article  CAS  Google Scholar 

  22. K. Liu, H. Ma, and X.G. Chen, Enhanced Elevated-Temperature Properties via Mo Addition in Al-Mn-Mg 3004 Alloy, J. Alloys Compd., 2017, 694, p 354–365

    Article  CAS  Google Scholar 

  23. Z. Jiaqing, L. Ya, P. Haoping, W. Jianhua, and S. Xuping, Spheroidization of Si in Al-12.6 wt.%Si at Eutectic Temperature and Its Tensile Properties, Mater. Res. Express, 2017, 4(10), p 106505

    Article  Google Scholar 

  24. J. Wang, J. Zhu, Y. Liu, H. Peng, and X. Su, Effect of Spheroidization of Eutectic Si on Mechanical Properties of Eutectic Al-Si Alloys, J. Mater. Res., 2018, 33(12), p 1773–1781

    Article  CAS  Google Scholar 

  25. A.R. Farkoosh, X. Grant Chen, and M. Pekguleryuz, Interaction Between Molybdenum and Manganese to form Effective Dispersoids in an Al-Si-Cu-Mg Alloy and Their Influence on Creep Resistance, Mater. Sci. Eng. A, 2015, 627, p 127–138

    Article  CAS  Google Scholar 

  26. N. Fat-Halla, Structural Modification of Al-Si Eutectic Alloy by Sr and Its Effect on Tensile and Fracture Characteristics, J. Mater. Sci., 1989, 24(7), p 2488–2492

    Article  CAS  Google Scholar 

  27. F.J. Tavitas-Medrano, J.E. Gruzleski, F.H. Samuel, S. Valtierra, and H.W. Doty, Effect of Mg and Sr-Modification on the Mechanical Properties of 319-Type Aluminum Cast Alloys Subjected to Artificial Aging, Mater. Sci. Eng. A, 2008, 480(1), p 356–364

    Article  Google Scholar 

  28. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, and P.J. Uggowitzer, Effect of Main Alloying Elements on Strength of Al-Si Foundry Alloys at Elevated Temperatures, Int. J. Cast Met. Res., 2012, 25(4), p 215–224

    Article  CAS  Google Scholar 

  29. L. Tian, Y. Guo, J. Li, J. Wang, H. Duan, F. Xia, and M. Liang, Elevated Re-Aging of a Piston Aluminium Alloy and Effect on the Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2018, 738, p 375–379

    Article  CAS  Google Scholar 

  30. R. Sharma, A. Kumar, and D.K. Dwivedi, Influence of Solution Temperature on Microstructure and Mechanical Properties of Two Cast Al-Si Alloys, Mater. Manuf. Process., 2006, 21(3), p 309–314

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Aluminum, through the NSERC Industry Research Chair in Metallurgy of Aluminum Transformation at the University of Quebec at Chicoutimi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Liu, K. & Chen, XG. Improved Elevated Temperature Properties in Al-13%Si Piston Alloys by Mo Addition. J. of Materi Eng and Perform 29, 126–134 (2020). https://doi.org/10.1007/s11665-019-04543-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04543-9

Keywords

Navigation