Skip to main content
Log in

Stress Corrosion Cracking Behavior of 2024 and 7075 High-Strength Aluminum Alloys in a Simulated Marine Atmosphere Contaminated with SO2

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The stress corrosion cracking (SCC) of high-strength 2024-T351 and 7075-T651 aluminum alloys in simulated marine atmospheric medium containing HSO3 was investigated. The results showed that the presence of HSO3 could significantly accelerate the corrosion process of 2024-T351 and 7075-T651 high-strength aluminum alloy. This process was attributed to the enhanced anodic dissolution and hydrogen embrittlement caused by the HSO3. The SCC susceptibility showed an increasing trend in both of aluminum alloys with increasing HSO3 concentration. Meanwhile, the hydrogen generated by HSO3 was shown to change the failure mode of these two aluminum alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Ortiz, M. Abdelshehid, R. Dalton, J. Soltero, R. Clark, M. Hahn, E. Lee, W. Lightell, B. Pregger, J. Ogren, P. Stoyanov, and O.S. Es-Said, Effect of Cold Work on the Tensile Properties of 6061, 2024, and 7075 Al Alloys, J. Mater. Eng. Perform., 2007, 16, p 515–520

    Article  CAS  Google Scholar 

  2. Y.F. Mo, C.Y. Liu, G.B. Teng, H.J. Jiang, Y. Chen, Z.X. Yang, and S.C. Han, Fabrication of 7075-0.25Sc-0.15Zr Alloy with Excellent Damping and Mechanical Properties by FSP and T6 Treatment, J. Mater. Eng. Perform., 2018, 27, p 4162–4167

    Article  CAS  Google Scholar 

  3. S. Sun, Q. Zheng, D. Li, and J. Wen, Long-Term Atmospheric Corrosion Behaviour of Aluminium Alloys 2024 and 7075 in Urban, Coastal and Industrial Environments, Corros. Sci., 2009, 51, p 719–727

    Article  CAS  Google Scholar 

  4. B.B. Wang, Z.Y. Wang, W. Han, and W. Ke, Atmospheric Corrosion of Aluminium Alloy 2024-T3 Exposed to Salt Lake Environment in Western China, Corros. Sci., 2012, 59, p 63–70

    Article  CAS  Google Scholar 

  5. Z. Cui, X. Li, C. Man, K. Xiao, C. Dong, X. Wang, and Z. Liu, Corrosion Behavior of Field-Exposed 7A04 Aluminum Alloy in the Xisha Tropical Marine Atmosphere, J. Mater. Eng. Perform., 2015, 24, p 2885–2897

    Article  CAS  Google Scholar 

  6. Z. Cui, X. Li, K. Xiao, C. Dong, L. Wang, D. Zhang, and Z. Liu, Exfoliation Corrosion Behavior of 2B06 Aluminum Alloy in a Tropical Marine Atmosphere, J. Mater. Eng. Perform., 2015, 24, p 296–306

    Article  CAS  Google Scholar 

  7. Z. Cui, X. Li, H. Zhang, K. Xiao, C. Dong, Z. Liu, L. Wang, Atmospheric Corrosion Behavior of 2A12 Aluminum Alloy in a Tropical Marine Environment. Adv. Mater. Sci. Eng., 2015, 2015, p 163205

    Article  Google Scholar 

  8. R.B. Clark, C. Frid, and M. Attrill, Marine Pollution, Clarendon Press, Oxford, 1989

    Google Scholar 

  9. Z. Cui, F. Ge, Y. Lin, L. Wang, L. Lei, H. Tian, M. Yu, and X. Wang, Corrosion Behavior of AZ31 Magnesium Alloy in the Chloride Solution Containing Ammonium Nitrate, Electrochim. Acta, 2018, 278, p 421–437

    Article  CAS  Google Scholar 

  10. P. Murkute, R. Kumar, S. Choudhary, H.S. Maharana, J. Ramkumar, and K. Mondal, Comparative Atmospheric Corrosion Behavior of a Mild Steel and an Interstitial Free Steel, J. Mater. Eng. Perform., 2018, 27, p 4497–4506

    Article  CAS  Google Scholar 

  11. Q. Qu, C. Yan, Y. Wan, and C. Cao, Effects of NaCl and SO2 on the Initial Atmospheric Corrosion of Zinc, Corros. Sci., 2002, 44, p 2789–2803

    Article  CAS  Google Scholar 

  12. D. Persson, T. Prosek, N. LeBozec, D. Thierry, and G. Luckeneder, Initial SO2-Induced Atmospheric Corrosion of ZnAlMg Coated Steel Studied with in situ Infrared Reflection Absorption Spectroscopy, Corros. Sci., 2015, 90, p 276–283

    Article  CAS  Google Scholar 

  13. Z. Cui, X. Li, K. Xiao, and C. Dong, Atmospheric Corrosion of Field-Exposed AZ31 Magnesium in a Tropical Marine Environment, Corros. Sci., 2013, 76, p 243–256

    Article  CAS  Google Scholar 

  14. Z. Cui, X. Li, K. Xiao, C. Dong, Z. Liu, and L. Wang, Pitting Corrosion Behaviour of AZ31 Magnesium in Tropical Marine Atmosphere, Corros. Eng. Sci. Technol., 2014, 49, p 363–371

    Article  CAS  Google Scholar 

  15. M. Stratmann and H. Streckel, On the Atmospheric Corrosion of Metals Which are Covered with Thin Electrolyte Layers—II, Exp. Results Corros. Sci., 1990, 30, p 697–714

    Article  CAS  Google Scholar 

  16. S. Oesch, M. Faller, ChemInform Abstract: Environmental Effects on Materials: The Effect of the Air Pollutants SO2, NO2, NO and O3 on the Corrosion of Copper, Zinc and Aluminum. A Short Literature Survey and Results of Laboratory Exposures. ChemInform, 2010, 28, p 1505–1530

    Article  Google Scholar 

  17. D. De la Fuente, E. Otero-Huerta, and M. Morcillo, Studies of Long-Term Weathering of Aluminium in the Atmosphere, Corros. Sci., 2007, 49, p 3134–3148

    Article  Google Scholar 

  18. J.-C. Lin, H.-L. Liao, W.-D. Jehng, C.-H. Chang, and S.-L. Lee, Effect of Heat Treatments on the Tensile Strength and SCC-Resistance of AA7050 in an Alkaline Saline Solution, Corros. Sci., 2006, 48, p 3139–3156

    Article  CAS  Google Scholar 

  19. H.-L. Liao, J.-C. Lin, and S.-L. Lee, Effect of Pre-immersion on the SCC of Heat-Treated AA7050 in an Alkaline 3.5% NaCl, Corros. Sci., 2009, 51, p 209–216

    Article  CAS  Google Scholar 

  20. H. Tian, X. Wang, Z. Cui, Q. Lu, L. Wang, L. Lei, Y. Li, and D. Zhang, Electrochemical Corrosion, Hydrogen Permeation and Stress Corrosion Cracking Behavior of E690 Steel in Thiosulfate-Containing Artificial Seawater, Corros. Sci., 2018, 144, p 145–162

    Article  CAS  Google Scholar 

  21. M. Li and Y. Cheng, Mechanistic Investigation of Hydrogen-Enhanced Anodic Dissolution of X-70 Pipe Steel and its Implication on Near-Neutral pH SCC of Pipelines, Electrochim. Acta, 2007, 52, p 8111–8117

    Article  CAS  Google Scholar 

  22. D. Najjar, T. Magnin, and T.J. Warner, Influence of Critical Surface Defects And Localized Competition Between Anodic Dissolution and Hydrogen Effects During Stress Corrosion Cracking of a 7050 Aluminium Alloy, Mater. Sci. Eng. A, 1997, 238, p 293–302

    Article  Google Scholar 

  23. H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, X.G. Li, D.W. Zhang, and Z.Y. Cui, Stress Corrosion Cracking of E690 Steel as a Welded Joint in a Simulated Marine Atmosphere Containing Sulphur Dioxide, Corros. Sci., 2015, 100, p 627–641

    Article  CAS  Google Scholar 

  24. H. Ma, Z. Liu, C. Du, X. Li, and Z. Cui, Comparative Study of the SCC Behavior of E690 Steel and Simulated HAZ Microstructures in a SO2-Polluted Marine Atmosphere, Mater. Sci. Eng. A, 2016, 650, p 93–101

    Article  CAS  Google Scholar 

  25. W.R. Osório, N. Cheung, J.E. Spinelli, P.R. Goulart, and A. Garcia, The Effects of a Eutectic Modifier on Microstructure and Surface Corrosion Behavior of Al-Si Hypoeutectic Alloys, J. Solid State Electrochem., 2007, 11, p 1421–1427

    Article  Google Scholar 

  26. W.R. Osório, L.R. Garcia, P.R. Goulart, and A. Garcia, Effects of Eutectic Modification and T4 Heat Treatment on Mechanical Properties and Corrosion Resistance of an Al-9 wt.% Si Casting Alloy, Mater. Chem. Phys., 2007, 106, p 343–349

    Article  Google Scholar 

  27. W.R. Osório, L.C. Peixoto, D.J. Moutinho, L.G. Gomes, I.L. Ferreira, and A. Garcia, Corrosion Resistance of Directionally Solidified Al-6Cu-1Si and Al-8Cu-3Si Alloys Castings, Mater. Des., 2011, 32, p 3832–3837

    Article  Google Scholar 

  28. X. Liu, G.S. Frankel, B. Zoofan, and S.I. Rokhlin, Effect of Applied Tensile Stress on Intergranular Corrosion of AA2024-T3, Corros. Sci., 2004, 46, p 405–425

    Article  CAS  Google Scholar 

  29. L. Wang, J. Xin, L. Cheng, K. Zhao, B. Sun, J. Li, X. Wang, and Z. Cui, Influence of Inclusions on Initiation of Pitting Corrosion and Stress Corrosion Cracking of X70 Steel in Near-Neutral pH Environment, Corros. Sci., 2019, 147, p 108–127

    Article  CAS  Google Scholar 

  30. D.B. Blücher, J.E. Svensson, and L.-G. Johansson, Influence of ppb Levels of SO[sub 2] on the Atmospheric Corrosion of Aluminum in the Presence of NaCl, J. Electrochem. Soc., 2005, 152, p 1547

    Article  Google Scholar 

  31. A.S. El-Amoush, Investigation of Corrosion Behaviour of Hydrogenated 7075-T6 Aluminum Alloy, J. Alloy. Compd., 2007, 443, p 171–177

    Article  CAS  Google Scholar 

  32. H. Kamoutsi, G.N. Haidemenopoulos, V. Bontozoglou, and S. Pantelakis, Corrosion-Induced Hydrogen Embrittlement in Aluminum Alloy 2024, Corros. Sci., 2006, 48, p 1209–1224

    Article  CAS  Google Scholar 

  33. U. Zupanc and J. Grum, Effect of Pitting Corrosion on Fatigue Performance of Shot-Peened Aluminium Alloy 7075-T651, J. Mater. Process. Technol., 2010, 210, p 1197–1202

    Article  CAS  Google Scholar 

  34. P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Effect of Solution pH on Electrochemical and Stress Corrosion Cracking Behaviour of a 7150 Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. A, 2014, 604, p 156–165

    Article  CAS  Google Scholar 

  35. H. Lee, Y. Kim, Y. Jeong, and S. Kim, Effects of Testing Variables on Stress Corrosion Cracking Susceptibility of Al 2024-T351, Corros. Sci., 2012, 55, p 10–19

    Article  CAS  Google Scholar 

  36. C. Larignon, J. Alexis, E. Andrieu, G. Odemer, and C. Blanc, The Contribution of Hydrogen to the Corrosion of 2024 Aluminium Alloy Exposed to Thermal and Environmental Cycling in Chloride Media, Corros. Sci., 2013, 69, p 211–220

    Article  CAS  Google Scholar 

  37. K. Rajan, W. Wallace, and J.C. Beddoes, Microstructural Study of a High-Strength Stress-Corrosion Resistant 7075 Aluminium Alloy, J. Mater. Sci., 1982, 17, p 2817–2824

    Article  CAS  Google Scholar 

  38. P.V. Petroyiannis, A.T. Kermanidis, P. Papanikos, and S.G. Pantelakis, Corrosion-Induced Hydrogen Embrittlement of 2024 and 6013 Aluminum Alloys, Theor. Appl. Fract. Mech., 2004, 41, p 173–183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge National Natural Science Foundation of China (Nos. 51701102), the Fundamental Research Funds for the Central Universities (No. 201762008), and the National Environmental Corrosion Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, F., Zhang, L., Tian, H. et al. Stress Corrosion Cracking Behavior of 2024 and 7075 High-Strength Aluminum Alloys in a Simulated Marine Atmosphere Contaminated with SO2. J. of Materi Eng and Perform 29, 410–422 (2020). https://doi.org/10.1007/s11665-019-04537-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04537-7

Keywords

Navigation