Skip to main content
Log in

Effect of the applied potential condition on the photocatalytic properties of Fe2O3|WO3 heterojunction films

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Semiconductors heterojunction and potential application have been investigated as strategy to improve the catalytic processes performance. In this study, we investigated the photocurrent response of photoanodes composed of two different heterojunctions, i.e., Fe2O3|WO3 and WO3|Fe2O3, which were prepared directly on transparent and conductive glass substrate (fluorine-doped tin oxide or FTO-glass) by combining hydrothermal and drop-casting methods. From photoelectrochemical studies, the conduction band edge’s positions for each semiconductor were determined using the Butler–Gärtner model. The heterojunction films were utilized as photoanode in photodegradation of Rhodamine B (RhB) dye in aqueous solution. Under polychromatic irradiation, superior performance was registered for FTO|WO3|Fe2O3 photoanode, reaching a RhB dye photodegradation around of 32% in 3 h. Moreover, we performed structural analyses, optical characterizations, and morphological property investigations using XRD, UV−Vis, and SEM techniques, respectively. Moreover, from the electrochemical studies, the superior photodegradation performance and photocurrent density for photoanode were registered for FTO|WO3|Fe2O3 film.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.J. Minggu, W.R.W. Daud, M.B. Kassim, An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrog. Energy. 35, 5233–5244 (2010)

    CAS  Google Scholar 

  2. M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001)

    PubMed  Google Scholar 

  3. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)

    CAS  PubMed  Google Scholar 

  4. H.G. Oliveira, D.C. Nery, C. Longo, Effect of applied potential on photocatalytic phenol degradation using nanocrystalline TiO2 electrodes. Appl. Catal. B. 93, 205–211 (2010)

    CAS  Google Scholar 

  5. T. H. Jeona, S. K. Choi, H. W. Jeong, S. Kim, H-W. Park photoelectrochemical water oxidation using ZnO nanorods coupled with cobalt-based catalysts. J. Electrochem. Sci. Technol. 2,187–192 (2011)

  6. F. Li, Z. Li, M. Zhang, Y. Shen, Y. Cai, Y. Li, X. Heb, C. Chen, Ag3PO4@holmium phosphate core@shell composites with enhanced photocatalytic activity. RSC Adv. 7, 34705–34713 (2017)

    CAS  Google Scholar 

  7. M. Yagi, S. Maruyama, K. Sone, K. Nagai, T. Norimatsu, Preparation and photoelectrocatalytic activity of nano-structured WO3 platelet film. J. Solid State Chem. 181, 175–182 (2008)

    CAS  Google Scholar 

  8. Y. Gao, O. Zandi, T.W. Hamann, Atomic layer stack deposition-annealing synthesis of CuWO4. J. Mater. Chem. A. 4, 2826–2830 (2016)

    CAS  Google Scholar 

  9. K. Sivula, F. Le Formal, M. Grätzel, Solar water splitting: progress using hematite α-Fe2O3 photoelectrodes. ChemSusChem. 4, 432−449 (2011)

  10. Y. Sun, C.J. Murphy, K.R. Reyes-Gil, E.A. Reyes-Garcia, J.M. Thornton, N.A. Morris, D. Raftery, Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis. Int. J. Hydrog. Energy. 34, 8476–8484 (2009)

    CAS  Google Scholar 

  11. L.S. Cavalcante, J.C. Sczancoski, N.C. Batista, E. Longo, J.A. Varela, M.O. Orlandi, Growth mechanism and photocatalytic properties of SrWO4 microcrystals synthesized by injection of ions into a hot aqueous solution. Adv. Powder Technol. 24, 344–353 (2013)

    CAS  Google Scholar 

  12. E.R. Morales, N. Mathews, D. Reyes-Coronado, C.R. Magana, D.R. Acosta, G. Alonso-Nunez, O.S. Martinez, X. Mathew, Physical properties of the CNT: TiO2 thin films prepared by sol-gel dip coating. Sol Energy. 86, 1037–1044 (2012)

    CAS  Google Scholar 

  13. W. Li, D. Li, S. Meng, W. Chen, X. Fu, Y. Shao, Novel Approach to enhance photosensitized degradation of Rhodamine B under visible light irradiation by the ZnxCd1−xS/TiO2 Nanocomposites. Environ. Sci. Technol. 45, 2987–2993 (2011)

    CAS  PubMed  Google Scholar 

  14. P. Lianos, Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell. The concept of the photofuelcell: a review of a re-emerging research field. J. Hazard Mater. 185, 575–590 (2011)

  15. K.N. Hang, L.J. Minggu, W.F. Mark-Lee, M.H.H. Jumali, M.B. Kassim, A new method for the fabrication of a bilayer WO3/Fe2O3 photoelectrode for enhanced photoelectrochemical performance. Mater. Res. Bull. 98, 47–52 (2018)

    Google Scholar 

  16. M.J. Katz, S.C. Riha, N.C. Jeon, A.B.F. Martinson, O.K. Farha, J.T. Hupp, Toward solar fuels: water splitting with sunlight and ‘rust’? Coord. Chem. Rev. 256, 2521–2529 (2012)

    CAS  Google Scholar 

  17. C.A. Grimes, K.V. Oomman, S. Ranjan, Light, water, hydrogen. The solar generation of hydrogen by water photoelectrolysis. Springer, New York, 2008

    Google Scholar 

  18. Y.C. Ling, G.M. Wang, J. Reddy, C.C. Wang, J.Z. Zhang, Y. Li, The influence of oxygen content on the thermal activation of hematite nanowires. Angew. Chem. Int. 51, 4074–4079 (2012)

    CAS  Google Scholar 

  19. X. Li, Z. Wang, Z. Zhang, L. Chen, J. Cheng, W. Ni, B. Wang, E. Xie, Light illuminated α-Fe2O3/Pt nanoparticles as water activation agent for photoelectrochemical water splitting. Sci. Rep. 5, 9130–9136 (2015)

    PubMed  PubMed Central  Google Scholar 

  20. F.L. Souza, K.P. Lopes, E. Longo, E.R. Leite, The influence of the film thickness of nanostructured alpha-Fe2O on water photooxidation. Phys. Chem. Chem. Phys. 11, 1215–1219 (2009)

    CAS  PubMed  Google Scholar 

  21. H. Wang, J. He, G. Boschloo, H. Lindström, A. Hagfeldt, S.-E. Lindquist, Electrochemical Investigation of Traps in a Nanostructured TiO2 Film. J. Phys. Chem. B. 105, 2529–2533 (2001)

    CAS  Google Scholar 

  22. D. Jiang, H. Zhao, S. Zhang, R. John, Characterization of photoelectrocatalytic processes at nanoporous TiO2 film electrodes: photocatalytic oxidation of glucose. J. Phys. Chem. B. 107, 12774–12780 (2003)

    CAS  Google Scholar 

  23. X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)

    CAS  Google Scholar 

  24. Y. Zhang, H. Ji, W. Ma, C. Chen, W. Song, J. Zhao, Doping-promoted solar water oxidation on hematite photoanodes. Molecules 21, 868–882 (2016)

    PubMed Central  Google Scholar 

  25. Y. Lin, G. Yuan, S. Sheehan, S. Zhou, D. Wang, Hematite-based solar water splitting: challenges and opportunities. Energy Environ. Sci. 4, 4862–4869 (2011)

    CAS  Google Scholar 

  26. M. Marelli, A. Naldoni, A. Minguzzi, M. Allieta, T. Virgili, G. Scavia, S. Recchia, R. Psaro, V. Dal Santo, Hierarchical hematite nanoplatelets for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces. 6, 11997–12004 (2014)

    CAS  PubMed  Google Scholar 

  27. S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011)

    CAS  PubMed  Google Scholar 

  28. A. Bak, S.K. Choi, H. Park, Photoelectrochemical performances of hematite (α-Fe2O3) films doped with various metals. Bull. Korean Chem. Soc. 36, 1487–1494 (2015)

    CAS  Google Scholar 

  29. V.A.N. De Carvalho, R.A.S. Luz, B.H. Lima, F.N. Crespilho, E.R. Leite, F.L. Souza, Highly oriented hematite nanorods arrays for photoelectrochemical water splitting. J. Power Sources. 205, 525–529 (2012)

    Google Scholar 

  30. K. Sivula, F.L. Formal, M. Grätzel, Photoanodes for water splitting: a host scaffold, guest absorber approach. Chem. Mater. 21, 2862–2867 (2009)

    CAS  Google Scholar 

  31. nanostructure-directing effect of Si-doping, I. Cesar, A. Kay, J. A. Gonzalez Martinez, M. Grätzel, Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight. J. Am. Chem. Soc. 128, 4582–4583 (2006)

    Google Scholar 

  32. I. Kay, M. Cesar, Grätzel, New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)

    CAS  PubMed  Google Scholar 

  33. L. Vayssieres, N. Beermann, S.-E. Lindquist, A. Hagfeldt, Controlled aqueous chemical growth of oriented three-dimensional nanorod arrays: application to iron(III) oxides. Chem. Mater. 13, 233–235 (2001)

    CAS  Google Scholar 

  34. L.C. Ferraz, W.M. Carvalho Jr., D. Criado, F.L. Souza, Vertically oriented iron oxide films produced by hydrothermal process: effect of thermal treatment on the physical chemical properties ACS Appl. Mater. Interfaces. 4, 5515–5523 (2012)

    CAS  Google Scholar 

  35. C.M. Memar, M.O. Phan, Tade, Photocatalytic activity of WO3/Fe2O3 nanocomposite photoanode. Int. J. Hydrog. Energy. 40, 8642–8649 (2015)

    CAS  Google Scholar 

  36. J. Krysa, M. Zlamal, S. Kment, Z. Hubicka, Photo-electrochemical properties of WO3 and α-Fe2O3 thin films. Chem. Eng. Trans. 41, 379–384 (2014)

    Google Scholar 

  37. E. Salje, K. Viswanatha, Physical properties and phase transitions in WO3. Acta Cryst. A31, 356–359 (1975)

    CAS  Google Scholar 

  38. E. Indrea, E. Bica, E.J. Popovici, R.C. Suciu, Rietveld refinement of powder X-ray diffraction of nanocrystalline noble metals-tungsten trioxide. Rev. Roum. Chim. 56, 589–593 (2011)

    CAS  Google Scholar 

  39. A.G. Souza Filho, J. M. Filho, V. N. Freire, A. P. Ayala, J. M. Sasaki, P. T. C. Freire, F. E. A. Melo, J. F. Julião, U.U. Gomes, Phase transition in WO3 microcrystals obtained by sintering process. J. Raman Spectra. 32, 695–699 (2001)

  40. G.H. Go, P.S. Shinde, C.H. Doh, W.J. Lee, PVP-assisted synthesis of nanostructured transparent WO3 thin films for photoelectrochemical water splitting. Mater. Des. 90, 1005–1009 (2016)

    CAS  Google Scholar 

  41. E.H. Umukoro, M.G. Peleyeju, J.C. Ngila, O.A. Arotiba, Towards wastewater treatment: photo-assisted electrochemical degradation of nitrophenol and orange II dye at a tungsten trioxide-exfoliated graphite composite electrode. Chem. Eng. J. 369, 8–18 (2017)

    Google Scholar 

  42. B.P. Nenavathu, S. Kandula, S. Verma, Visible-light-driven photocatalytic degradation of safranin-T dye using functionalized graphene oxide nanosheet (FGS)/ZnO nanocomposites. RSC Adv. 8, 19659–19667 (2018)

    CAS  Google Scholar 

  43. N. Muhd Julkapli, S. Bagheri, S. Bee Abd Hamid. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J. 2014, 1–25 (2014)

  44. S. Bai, K. Zhang, J. Sun, R. Luo, D. Li, A. Chen, Surface decoration of WO3 architectures with Fe2O3 nanoparticles for visible-light-driven photocatalysis. Cryst. Eng. Comm. 16, 3289–3295 (2014)

    CAS  Google Scholar 

  45. B. Wickman, A.B. Fanta, A. Burrows, A. Hellman, J.B. Wagner, B. Iandolo, Iron oxide films prepared by rapid thermal processing for solar energy conversion. Sci. Rep. 7, 40500–40508 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. L.S. Cavalcante, J.C. Sczancoski, V.C. Albarici, J.M.E. Matos, J.A. Varela, synthesis, characterization, structural refinement and optical absorption behavior of PbWO4 powders. Mater. Sci. Eng. B. 150, 18–25 (2008)

    CAS  Google Scholar 

  47. L. Vayssieres, A. Hagfeldt, S. E. Lindquist, Purpose-built metal oxide nanomaterials. The emergence of a new generation of smart materials. Pure Appl. Chem. 72, 47–52 (2000)

  48. Y. Song, S. Qin, Y. Zhang, W. Gao, J. Liu, Large-scale porous hematite nanorod arrays: direct growth on titanium foil and reversible lithium storage. J. Phys. Chem. C. 114, 21158–21164 (2010)

    CAS  Google Scholar 

  49. M.J.S. Costa, G.S. Costa, A.E.B. Lima, G.E.L. Junior, E. Longo, L.S. Cavalcante, R.S. Santos, Investigation of charge recombination lifetime in γ-WO3 films modified with Ag0 and Pt0 nanoparticles and its influence on photocurrent density. Ionics 24, 3291–3297 (2018)

    CAS  Google Scholar 

  50. M.J.S. Costa, G.S. Costa, A.E.B. Lima, G.E.L. Junior, E. Longo, L.S. Cavalcante, R.S. Santos, Improvement of photocurrent and progesterone degradation by employing WO3 films modified with platinum and silver nanoparticles. ChemPlusChem 83, 1153–1161 (2018)

    CAS  Google Scholar 

  51. M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J. Power Sources. 181, 46–55 (2008)

    CAS  Google Scholar 

  52. P. Wang, D. Wang, J. Lin, X. Li, C. Peng, X. Gao, Q. Huang, J. Wang, H. Xu, C. Fan, Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device. ACS Appl. Mater. Interfaces. 4, 2295–2302 (2012)

    CAS  PubMed  Google Scholar 

  53. E.B. Lima, M.J.S. Costa, R.S. Santos, N.C. Batista, L.S. Cavalcante, E. Longo, G.E. Luz Jr., Facile preparation of CuWO4 porous films and their photoelectrochemical properties. Electrochim. Acta. 256, 139–145 (2017)

    CAS  Google Scholar 

  54. J. Bard, L. R. Faulkener, Electrochemical Methods, Fundamentals and Applications. 2nd ed. New York: Wiley, INC. pp. 54 (2001)

  55. A.A. Dakhel, Comparative study of structural, optical and magnetic properties of Fe–Pt, Fe–Cu and Fe–Pd-codoped WO3 nanocrystalline ceramics: effect of annealing in hydrogen atmosphere. Bull. Mater. Sci. 41, 139–147 (2018)

    Google Scholar 

  56. F.H. Aragón, J.A.H. Coaquira, L.C.C.M. Nagamine, R. Cohen, S.W. Silva, P.C. Morais, Thermal-annealing effects on the structural and magnetic properties of 10% Fe-doped SnO2 nanoparticles synthetized by a polymer precursor method. J. Magn. Magn. Mater. 375, 74–79 (2015)

    Google Scholar 

  57. K. Sivula, R. Zboril, F.L. Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Grätzel, Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132, 7436–7444 (2010)

    CAS  PubMed  Google Scholar 

  58. N. Beermann, L. Vayssieres, S.-E. Lindquist, A. Hagfeldtz, Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 147, 2456–2461 (2000)

    CAS  Google Scholar 

  59. J.Y. Kim, J.-W. Jang, D.H. Youn, J.Y. Kim, E.S. Kim, J.S. Lee, Graphene-carbon nanotube composite as effective conducting scaffold to enhance the photoelectrochemical water oxidation activity of a hematite film. RSC Adv. 2, 9415–9422 (2012)

    CAS  Google Scholar 

  60. J.Y. Kim, G. Magesh, D.H. Youn, J.-W. Jang, J. Kubota, K. Domen, J.S. Lee, Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3, 2681–2688 (2013)

    PubMed  PubMed Central  Google Scholar 

  61. Z. Zhang, M.F. Hossain, T. Takahashi, Self-assembled hematite (a-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl. Catal. B. 95, 423–429 (2010)

    CAS  Google Scholar 

  62. I.M. Szilágyi, B. Fórisz, O. Rosseler, Á. Szegedi, P. Németh, P. Király, G. Tárkányi, B. Vajna, K. Vargas-Josepovits, K. László, A.L. Tóth, P. Baranyai, M. Leskelä, WO3 photocataysts: influence of structure and composition. J. Catal. 294, 119–127 (2012)

    Google Scholar 

  63. K. Vignesh, R. Priyanka, R. Hariharan, M. Rajarajan, A. Suganthi, A fabrication of CdS and CuWO4 modified TiO2 nanoparticles and its photocatalytic activity under visible light irradiation. J. Ind. Eng. Chem. 20, 435–443 (2014)

    CAS  Google Scholar 

  64. R. Marschall, Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 24, 2421–2440 (2013)

    Google Scholar 

  65. A.J. Bard, R. Memming, B. Miller, Terminology in semiconductor electrochemistry and photoelectrochemical energy conversion. Pure Appl. Chem. 63, 569–596 (1991)

    Google Scholar 

  66. R. Beranek, (Photo)electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Adv. Phys. Chem. 2011, 786759–786778 (2011)

    Google Scholar 

  67. M.A. Alpuche-Aviles, Y. Wu, Photoelectrochemical study of the band structure of Zn2SnO4 prepared by the hydrothermal method. J. Am. Chem. Soc. 131, 3216–3224 (2009)

    CAS  PubMed  Google Scholar 

  68. E. Paulauskas, J.E. Katz, G.E. Jellison, N.S. Lewis, L.A. Boatner, G.M. Brown, Growth characterization, and electrochemical properties of doped n-type KTaO3 photoanodes. J. Electrochem. Soc. 156, 580–587 (2009)

    Google Scholar 

  69. H. Chen, W. Leng, Y. Xu, Enhanced visible-light photoactivity of CuWO4 through a surface-deposited CuO. J. Phys. Chem. C. 118, 9982–9989 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the laboratory assistance provided by LIMAV for the FEG-SEM analysis, and Brazilian research financing institutions: CNPq (408036/2018-4) and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Cavalcante.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, G.S., Costa, M.J.S., Oliveira, H.G. et al. Effect of the applied potential condition on the photocatalytic properties of Fe2O3|WO3 heterojunction films. J Inorg Organomet Polym 30, 2851–2862 (2020). https://doi.org/10.1007/s10904-019-01429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01429-0

Keywords

Navigation