Skip to main content
Log in

Modeling the Age-Hardening Process of Aluminum Alloys Containing the Prolate/Oblate Shape Precipitates

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Non-spherical precipitates are the main strengthening source of the age-hardenable aluminum alloys. In the majority of the precipitation hardening models presented so far, the simple spherical shape has been assumed. Moreover, the models which considered the actual shape of the precipitates, are derived based on the simple assumption of steady-state diffusion problem solutions. In the present study, the classical Kampmann and Wagner numerical model of spherical precipitates is extended to model the kinetics of spheroidal shape precipitates evolution during the aging treatment of Al alloys. To do so, a new rate law is proposed using a similarity solution of the transient diffusion problem around the spheroidal precipitates, with different aspect ratios, and moving boundaries. Moreover, a modified age-hardening model which considered the effects of precipitate shape, size and volume fraction, is used to predict the variation of the alloy hardness during the aging process. The accuracy of the proposed model is shown by comparing the predicted features of precipitates, and hardness evolution with the published experimental data. Also, the validity of the existing approximate solutions for the aging problem is discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Rambabu, N.E. Prasad, V. Kutumbarao, R. Wanhill, Aluminium Alloys for Aerospace Applications. Aerospace Materials and Material Technologies (Springer, Singapore, 2017), pp. 29–52

    Google Scholar 

  2. K. Wen, B. Xiong, Y. Zhang, Z. Li, X. Li, Sh. Huang, L. Yan, H. Yan, H. Liu, Met. Mater. Int. 24, 537 (2018)

    CAS  Google Scholar 

  3. N. Anjabin, A.K. Taheri, Mater. Sci. Technol. 29, 968 (2013)

    CAS  Google Scholar 

  4. K. Wen, B. Xiong, Y. Zhang, Z. Li, X. Li, L. Yan, H. Yan, H. Liu, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00446-5

    Article  Google Scholar 

  5. N. Anjabin, Met. Mater. Int. 25, 159 (2019)

    CAS  Google Scholar 

  6. X. Peng, Y. Li, G. Xu, J. Huang, Z. Yin, Met. Mater. Int. 24, 1046 (2018)

    CAS  Google Scholar 

  7. O. Myhr, Ø. Grong, Acta Mater. 48, 1605 (2000)

    CAS  Google Scholar 

  8. O.R. Myhr, Ø. Grong, S.J. Andersen, Acta Mater. 49, 65 (2001)

    CAS  Google Scholar 

  9. A. Deschamps, Y. Brechet, Acta Mater. 47, 293 (1998)

    Google Scholar 

  10. A. Simar, Y. Bréchet, B. De Meester, A. Denquin, T. Pardoen, Acta Mater. 55, 6133 (2007)

    CAS  Google Scholar 

  11. H. Shercliff, M. Ashby, Acta Metall. Mater. 38, 1789 (1990)

    CAS  Google Scholar 

  12. O.R. Myhr, Ø. Grong, K.O. Pedersen, Metall. Mater. Trans. A 41, 2276 (2010)

    Google Scholar 

  13. S. Esmaeili, D. Lloyd, W. Poole, Acta Mater. 51, 3467 (2003)

    CAS  Google Scholar 

  14. J. da Costa Teixeira, L. Bourgeois, C.W. Sinclair, C.R. Hutchinson, Acta Mater. 57, 6075 (2009)

    Google Scholar 

  15. G. Liu, G. Zhang, X. Ding, J. Sun, K. Chen, Mater. Sci. Eng. A 344, 113 (2003)

    Google Scholar 

  16. F.S. Ham, J. Phys. Chem. Solids 6, 335 (1958)

    CAS  Google Scholar 

  17. G. Horvay, J. Cahn, Acta Metall. 9, 695 (1961)

    CAS  Google Scholar 

  18. M. Ferrante, R. Doherty, Acta Metall. 27, 1603 (1979)

    CAS  Google Scholar 

  19. A. Bahrami, A. Miroux, J. Sietsma, Metall. Mater. Trans. A 43, 4445 (2012)

    CAS  Google Scholar 

  20. M. Song, Mater. Sci. Eng. A 443, 172 (2007)

    Google Scholar 

  21. Y. Hu, G. Wang, M. Ye, S. Wang, L. Wang, Y. Rong, Mater. Des. 151, 123 (2018)

    CAS  Google Scholar 

  22. D. Larouche, Acta Mater. 123, 188 (2017)

    CAS  Google Scholar 

  23. K. Kim, P.W. Voorhees, Acta Mater. 152, 327 (2018)

    CAS  Google Scholar 

  24. B. Holmedal, E. Osmundsen, Q. Du, Metall. Mater. Trans. A 47, 581 (2016)

    CAS  Google Scholar 

  25. Q. Du, B. Holmedal, J. Friis, C.D. Marioara, Metall. Mater. Trans. A 47, 589 (2016)

    CAS  Google Scholar 

  26. Y. Li, B. Holmedal, H. Li, L. Zhuang, J. Zhang, Q. Du, Materialia 4, 431 (2018)

    Google Scholar 

  27. K. Wu, Q. Chen, P. Mason, J. Phase Equilibria Diffus. 39, 571 (2018)

    CAS  Google Scholar 

  28. N. Anjabin, M.S. Salehi, Metall. Mater. Trans. A 49, 3584 (2018)

    CAS  Google Scholar 

  29. R.W. Balluffi, S. Allen, W.C. Carter, Kinetics of Materials (Wiley, Hoboken, 2005)

    Google Scholar 

  30. K.G.F. Janssens, D. Raabe, E. Kozeschnik, M.A. Miodownik, B. Nestler, Computational Materials Engineering: An Introduction to Microstructure Evolution (Academic Press, Cambridge, 2010)

    Google Scholar 

  31. J. Bourne, C. Atkinson, R. Reed, Metall. Mater. Trans. A 25, 2683 (1994)

    Google Scholar 

  32. S. Esmaeili, D.J. Lloyd, W.J. Poole, Acta Mater. 51, 2243 (2003)

    CAS  Google Scholar 

  33. J.H. Kim, M.G. Lee, D. Kim, R.H. Wagoner, Met. Mater. Int. 17, 291 (2011)

    CAS  Google Scholar 

  34. C. Sigli, F. De Geuser, A. Deschamps, J. Lépinoux, M. Perez, C. R. Phys. 19, 688 (2018)

    CAS  Google Scholar 

  35. M.R. Ahmadi, B. Sonderegger, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik, Mater. Sci. Eng. A 590, 262 (2014)

    CAS  Google Scholar 

  36. B. Sonderegger, E. Kozeschnik, Scr. Mater. 66, 52 (2012)

    CAS  Google Scholar 

  37. O. Grong, Metallurgical Modelling of Welding (Institute of Materials, London, 1997)

    Google Scholar 

  38. M. Mantina, Y. Wang, L. Chen, Z. Liu, C. Wolverton, Acta Mater. 57, 4102 (2009)

    CAS  Google Scholar 

  39. C. Gallais, A. Denquin, Y. Bréchet, G. Lapasset, Mater. Sci. Eng. A 496, 77 (2008)

    Google Scholar 

  40. D. Bardel, M. Perez, D. Nelias, A. Deschamps, C.R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier, F. Bourlier, Acta Mater. 62, 129 (2014)

    CAS  Google Scholar 

  41. O. Myhr, Ø. Grong, H. Fjær, C. Marioara, Acta Mater. 52, 4994 (2004)

    Google Scholar 

  42. W. Anderson, Precipitation from Solid Solution (ASM, Metals park, 1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nozar Anjabin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjabin, N. Modeling the Age-Hardening Process of Aluminum Alloys Containing the Prolate/Oblate Shape Precipitates. Met. Mater. Int. 27, 1620–1630 (2021). https://doi.org/10.1007/s12540-019-00579-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00579-7

Keywords

Navigation