Skip to main content
Log in

Rheological Behavior and Thermal Conductivities of Emulsion-Based Thermal Pastes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The role of thermal interface materials (TIMs) has become substantial due to their critical applications in electronic devices for effective heat dissipation. Dimethyl silicone oil-based thermal pastes are widely used as TIMs because they can provide an intimate bonding between the heat sink and the electronic chip; however, the thermal conductivities of typical silicone oil-based thermal pastes are low. In this study, we prepared thermally conductive emulsion-based thermal pastes with two kinds of boron nitride (BN) fillers and investigated their rheological behavior and thermal conductivities. The emulsion was composed of dimethyl silicone oil, n-butanol, and sorbitan monooleate (Span 80) as an emulsifier. The fillers were boron nitride fibers (BNFs) and boron nitride nanosheets (BNNSs). The viscosity, storage modulus, and loss modulus of the emulsion-based pastes were smaller than those of the corresponding silicone oil-based ones. The thermal conductivities of the emulsion based pastes were larger than those of the silicone oil-based ones because of their lower viscosity and higher baseline thermal conductivity. The pastes with BNNSs had larger thermal conductivities in comparison with the corresponding ones with BNFs. To further enhance the thermal conductivity, BNNSs were coated with two silane coupling agents, 3-aminopropyl-triethoxy silane (KH550) and 3-(Trimethoxysilyl)propyl methacrylate (KH570), and then introduced into the emulsion. The maximum thermal conductivity was 1.04 W m−1 K−1 for the emulsion-based paste with KH550-coated BNNSs at a filler loading of 39 vol.%, which was a ∼ 7-fold increase in comparison with that of neat silicone oil (0.13 W m−1 K−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Yang, C. Liang, T. Ma, Y. Guo, J. Kong, J. Gu, M. Chen, and J. Zhu, Adv. Compos. Hybrid Mater. 1, 207 (2018).

    Google Scholar 

  2. W. Dai, L. Lv, J. Lu, H. Hou, Q. Yan, F.E. Alam, Y. Li, X. Zeng, J. Yu, Q. Wei, X. Xu, J. Wu, N. Jiang, S. Du, R. Sun, J. Xu, C.P. Wong, and C.T. Lin, ACS Nano 13, 1547 (2019).

    CAS  Google Scholar 

  3. Z. Tian, J. Sun, S. Wang, X. Zeng, S. Zhou, S. Bai, N. Zhao, and C.P. Wong, J. Mater. Chem. A 6, 17540 (2018).

    CAS  Google Scholar 

  4. Z. Fang, M. Li, S. Wang, Y. Li, X. Wang, Y. Gu, Q. Liu, J. Tian, and Z. Zhang, Appl. Compos. Mater. 25, 1255 (2018).

    CAS  Google Scholar 

  5. F. Sarvar, D.C. Whalley, and P.P. Conway, in 1st IEEE Electron. Syst. Technol. Conf. Proceeding (2006), pp. 1292–1302.

  6. J. Hansson, T.M.J. Nilsson, L. Ye, and J. Liu, Int. Mater. Rev. 63, 22 (2018).

    CAS  Google Scholar 

  7. H. Yu, L. Li, and Y. Zhang, Scr. Mater. 66, 931 (2012).

    CAS  Google Scholar 

  8. C.K. Leong, Y. Aoyagi, and D.D.L. Chung, J. Electron. Mater. 34, 1336 (2005).

    CAS  Google Scholar 

  9. H. Chen, H. Wei, M. Chen, F. Meng, H. Li, and Q. Li, Appl. Surf. Sci. 283, 525 (2013).

    CAS  Google Scholar 

  10. C.K. Leong and D.D.L. Chung, Carbon 41, 2459 (2003).

    CAS  Google Scholar 

  11. K. Zhang, Y. Lu, N. Hao, and S. Nie, Cellulose 26, 8669 (2019).

    CAS  Google Scholar 

  12. W. Yu, H. Xie, L. Chen, Z. Zhu, J. Zhao, and Z. Zhang, Phys. Lett. A 378, 207 (2014).

    CAS  Google Scholar 

  13. W. Yu, J. Zhao, M. Wang, Y. Hu, L. Chen, and H. Xie, Nanoscale Res. Lett. 10, 113 (2015).

    Google Scholar 

  14. Y. Guo, Z. Lyu, X. Yang, Y. Lu, K. Ruan, Y. Wu, J. Kong, and J. Gu, Compos. B 164, 732 (2019).

    CAS  Google Scholar 

  15. T.L. Li and S.L.C. Hsu, J. Phys. Chem. B 114, 6825 (2010).

    CAS  Google Scholar 

  16. C.C. Teng, C.C.M. Ma, K.C. Chiou, T.M. Lee, and Y.F. Shih, Mater. Chem. Phys. 126, 722 (2011).

    CAS  Google Scholar 

  17. G.W. Lee, M. Park, J. Kim, J.I. Lee, and H.G. Yoon, Compos. A 37, 727 (2006).

    Google Scholar 

  18. K. Sato, H. Horibe, T. Shirai, Y. Hotta, H. Nakano, H. Nagai, K. Mitsuishi, and K. Watari, J. Mater. Chem. 20, 2749 (2010).

    CAS  Google Scholar 

  19. H. Ishida and S. Rimdusit, Thermochim. Acta 320, 177 (1998).

    CAS  Google Scholar 

  20. K.C. Yung and H. Liem, J. Appl. Polym. Sci. 106, 3587 (2007).

    CAS  Google Scholar 

  21. Y. Xu and D.D.L. Chung, Compos. Interfaces 7, 243 (2000).

    CAS  Google Scholar 

  22. X. Yang, Y. Guo, Y. Han, Y. Li, T. Ma, M. Chen, J. Kong, J. Zhu, and J. Gu, Compos. B 175, 107070 (2019).

    CAS  Google Scholar 

  23. L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu, and T.J. Goh, Thermochim. Acta 430, 155 (2005).

    CAS  Google Scholar 

  24. C.H. Liu, H. Huang, Y. Wu, and S.S. Fan, Appl. Phys. Lett. 84, 4248 (2004).

    CAS  Google Scholar 

  25. L. Liu, D. Su, Y. Tang, and G. Fang, Renew. Sustain. Energy Rev. 62, 305 (2016).

    CAS  Google Scholar 

  26. C. Lin and D.D.L. Chung, J. Mater. Sci. 42, 9245 (2007).

    CAS  Google Scholar 

  27. W. Khalil, A. Mohamed, M. Bayoumi, and T.A. Osman, Iran. J. Sci. Technol. Trans. Mech. Eng. 42, 355 (2018).

    Google Scholar 

  28. M. Ashour, A. Mohamed, A.B. Elshalakany, T. Osman, and A. Khatab, Ind. Lubr. Tribol. 70, 331 (2018).

    Google Scholar 

  29. C. Lin and D.D.L. Chung, J. Electron. Mater. 38, 2069 (2009).

    CAS  Google Scholar 

  30. X. He and Y. Wang, J. Appl. Polym. Sci. 136, 47726 (2019).

    Google Scholar 

  31. L. Han, L. Huiqiang, L. Zuoye, and C. Sheng, Rare Met. Mater. Eng. 47, 2668 (2018).

    Google Scholar 

  32. W. Yu, H. Xie, L. Yin, J. Zhao, L. Xia, and L. Chen, Int. J. Therm. Sci. 91, 76 (2015).

    CAS  Google Scholar 

  33. D. Miller, E.M. Wiener, A. Turowski, C. Thunig, and H. Hoffmann, Colloids Surf. A 152, 155 (1999).

    CAS  Google Scholar 

  34. A.G. De Boos and T. Jellinek, J. Macromol. Sci. Chem. 17, 311 (1982).

    Google Scholar 

  35. F. Wang, J. Liu, X. Fang, and Z. Zhang, Sol. Energy Mater. Sol. Cells 147, 101 (2016).

    CAS  Google Scholar 

  36. A. Yazdan, J.Z. Wang, B.K. Hu, W.S. Xie, L.Y. Zhao, C.W. Nan, and L.L. Li, Rare Met. (2019). https://doi.org/10.1007/s12598-019-01322-2.

    Article  Google Scholar 

  37. M. Kawaguchi, Adv. Colloid Interface Sci. 233, 186 (2016).

    CAS  Google Scholar 

  38. S. Vílchez, L.A. Pérez-Carrillo, J. Miras, C. Solans, and J. Esquena, Langmuir 28, 7614 (2012).

    Google Scholar 

  39. Z. Hu, M. Liao, Y. Chen, Y. Cai, L. Meng, Y. Liu, N. Lv, Z. Liu, and W. Yuan, Int. J. Nanomed. 7, 5719 (2012).

    CAS  Google Scholar 

  40. Q. Xu, M. Nakajima, H. Nabetani, S. Iwamoto, and X. Liu, J. Am. Oil Chem. Soc. 78, 1185 (2001).

    CAS  Google Scholar 

  41. R. Pal, J. Colloid Interface Sci. 225, 359 (2000).

    CAS  Google Scholar 

  42. T. Kanwal, M. Kawish, R. Maharjan, I. Ghaffar, H.S. Ali, M. Imran, S. Perveen, S. Saifullah, S.U. Simjee, and M.R. Shah, J. Mol. Liq. 289, 111098 (2019).

    CAS  Google Scholar 

  43. J. Cho, Y.J. Park, H. Sun, S. Kim, and Y. Yoon, Colloids Surf. A 274, 43 (2006).

    CAS  Google Scholar 

  44. R. Pal, AIChE J. 42, 3181 (1996).

    CAS  Google Scholar 

  45. Y. Otsubo and R.K. Prud’homme, Rheol. Acta 33, 303 (1994).

    CAS  Google Scholar 

  46. Q. Zhu, H. Lu, J. Zhu, M. Zhang, and L. Yin, Food Hydrocolloids 91, 204 (2019).

    CAS  Google Scholar 

  47. S.S. Datta, D.D. Gerrard, T.S. Rhodes, T.G. Mason, and D.A. Weitz, Phys. Rev. 84, 041404 (2011).

    Google Scholar 

  48. J. Xiao, X. Wang, A.J. Perez Gonzalez, and Q. Huang, Food Hydrocolloids 54, 30 (2016).

    CAS  Google Scholar 

  49. S. Mallakpour and M. Madani, J. Mater. Sci. 49, 5112 (2014).

    CAS  Google Scholar 

  50. C.M. Lee, J.D. Kubicki, B. Fan, L. Zhong, M.C. Jarvis, and S.H. Kim, J. Phys. Chem. B 119, 15138 (2015).

    CAS  Google Scholar 

  51. S.H. Su, Y. Huang, S. Qu, W. Liu, R. Liu, and L. Li, Diamond Relat. Mater. 81, 161 (2018).

    CAS  Google Scholar 

  52. H. Yu, L. Li, T. Kido, G. Xi, G. Xu, and F. Guo, J. Appl. Polym. Sci. 124, 669 (2012).

    CAS  Google Scholar 

  53. Y. Zhou, J. Yu, X. Wang, Y. Wang, J. Zhu, and Z. Hu, Fibers Polym. 16, 1772 (2015).

    CAS  Google Scholar 

  54. Z. Ma, J. Wang, and X. Zhang, J. Appl. Polym. Sci. 107, 1000 (2008).

    CAS  Google Scholar 

  55. I. Jang, K.H. Shin, I.L. Yang, H. Kim, J. Kim, W.H. Kim, S.W. Jeon, and J.P. Kim, Colloids Surf. A 518, 64 (2017).

    CAS  Google Scholar 

  56. J. Gu, Z. Lv, Y. Wu, Y. Guo, L. Tian, H. Qiu, W. Li, and Q. Zhang, Compos. A 94, 209 (2017).

    CAS  Google Scholar 

  57. J. Gu, C. Liang, J. Dang, W. Dong, and Q. Zhang, RSC Adv. 6, 35809 (2016).

    CAS  Google Scholar 

  58. H. Du, Y. Qi, W. Yu, J. Yin, and H. Xie, Int. J. Heat Mass Transfer 112, 1052 (2017).

    CAS  Google Scholar 

  59. H. Hong, D. Thomas, A. Waynick, W. Yu, P. Smith, and W. Roy, J. Nanopart. Res. 12, 529 (2010).

    CAS  Google Scholar 

  60. Y.H. Zhao, Y.F. Zhang, and S.L. Bai, Compos. A 85, 148 (2016).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51572149), Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, Opening Project of Engineering Research Center of Nano-Geo Materials of Ministry of Education of China University of Geosciences (Grant No. NGM2018KF010), and National Key Research and Development Program of China (Grant No. 2016YFA0201003). We thank Ms. Chan Liu in School of Materials Science and Engineering at Tsinghua University for the help in thermal gravimetric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangliang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdan, A., Wang, J., Nan, CW. et al. Rheological Behavior and Thermal Conductivities of Emulsion-Based Thermal Pastes. J. Electron. Mater. 49, 2100–2109 (2020). https://doi.org/10.1007/s11664-019-07907-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07907-y

Keywords

Navigation