Skip to main content
Log in

Temperature-Dependent Crystallization of Ga2O3 for Ultraviolet Photodetectors

  • Topical Collection: 19th International Conference on II-VI Compounds
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

As an n-type oxide semiconductor, Ga2O3 shows great promise in solar-blind ultraviolet (UV) photodetectors due to its adequate band gap, high absorption coefficient, high thermal and chemical stability, high breakdown voltage, and high sensitivity to UV light. In order to investigate the photoresponse of the Ga2O3 photodetector with different crystallization status, we fabricated a series of β-Ga2O3 thin films on a sapphire substrate via pulsed laser deposition with different deposition temperatures from 250°C to 650°C. X-ray diffraction and scanning electron microscopy result showed crystallization enhancement due to the increasing of deposition temperature, and the crystallization procedure started at ∼ 450°C. Optical analysis indicated a blue shift present at the absorption edge (from 4.6 eV to 5.1 eV) with temperature increasing from 450°C to 650°C, showing modulation feasibility in the band gap due to temperature dependence. In addition, all samples showed high transmittance (over 90%) over the entire visible spectrum. Film detectors fabricated by these samples showed high photoresponse and high light/dark current ratio (ILight/IDark) on Ga2O3 deposited at 450°C. Transmission electron microscopy result for film deposited at 450°C showed that the top and bottom regions of films contained both amorphous and crystalline Ga2O3, while there was no crystallization in the middle area of the film, indicating that a combined amorphous-crystalline Ga2O3 film with adequate ratio of crystalline state can significantly enhance the photoresponse while restraining the dark current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.H. Tippins, Phys. Rev. A 140, 316 (1965).

    Article  CAS  Google Scholar 

  2. S.S. Kumar, E.J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C.V. Ramana, J. Phys. Chem. C 117, 4194 (2013).

    Article  CAS  Google Scholar 

  3. F.B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q.X. Guo, J. Cryst. Growth 387, 96 (2014).

    Article  CAS  Google Scholar 

  4. D. Zhang, W. Zheng, R.C. Lin, T.T. Li, Z.J. Zhang, and F. Huang, J. Alloys Compd. 735, 150 (2018).

    Article  CAS  Google Scholar 

  5. Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J.J. Delaunay, Adv. Funct. Mater. 20, 3972 (2010).

    Article  CAS  Google Scholar 

  6. S. Fujita, Jpn. J. Appl. Phys. 54, 030101 (2015).

    Article  Google Scholar 

  7. S. Jin, X. Wang, X. Wang, M. Ju, S. Shen, W. Liang, Y. Zhao, Z. Feng, H.Y. Playford, R.I. Walton, and C. Li, J. Phys. Chem. C 119, 18221 (2015).

    Article  CAS  Google Scholar 

  8. M. Higashiwaki, H. Murakami, Y. Kumagai, and A. Kuramata, Jpn. J. Appl. Phys. 55, 1202A1 (2016).

    Article  Google Scholar 

  9. H. Von Wenckstern, Adv. Electron. Mater. 3, 1600350 (2017).

    Article  Google Scholar 

  10. M. Kim, J.-H. Seo, U. Singisetti, and Z. Ma, J. Mater. Chem. C 5, 8338 (2017).

    Article  CAS  Google Scholar 

  11. M. Higashiwaki, A. Kuramata, H. Murakami, and Y. Kumagai, J. Phys. D Appl. Phys. 50, 333002 (2017).

    Article  Google Scholar 

  12. P. Kroll, R. Dronskowski, and M. Martin, J. Mater. Chem. 15, 3296 (2005).

    Article  CAS  Google Scholar 

  13. R. Roy, V.G. Hill, and E.F. Osburn, J. Am. Chem. Soc. 74, 719 (1952).

    Article  CAS  Google Scholar 

  14. D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X.H. Zhang, and M. Razeghi, Appl. Phys. Lett. 76, 403 (2000).

    Article  CAS  Google Scholar 

  15. P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, and M. Razeghi, J. Cryst. Growth 231, 366 (2001).

    Article  CAS  Google Scholar 

  16. S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, and T. Venkatesan, Appl. Phys. Lett. 80, 1529 (2002).

    Article  CAS  Google Scholar 

  17. W. Yang, S.S. Hullavarad, B. Nagaraj, I. Takeuchi, R.P. Sharma, and T. Venkatesan, Appl. Phys. Lett. 82, 3424 (2003).

    Article  CAS  Google Scholar 

  18. T. Teraji, S. Yoshizaki, H. Wada, M. Hamda, and T. Ito, Diam. Relat. Mater. 13, 858 (2004).

    Article  CAS  Google Scholar 

  19. A.S. Pratiyush, S. Krishnamoorthy, S.V. Solanke, Z. Xia, R. Muralidharan, S. Rajan, and D.N. Nathless, Appl. Phys. Lett. 110, 221107 (2017).

    Article  Google Scholar 

  20. F.-P. Yu, S.-L. Ou, and D.-S. Wuu, Opt. Mater. Express 5, 1240 (2015).

    Article  Google Scholar 

  21. G.C. Hu, C.X. Shan, N. Zhang, M.M. Jiang, S.P. Wang, and D.Z. Shen, Opt. Express 23, 13554 (2015).

    Article  CAS  Google Scholar 

  22. Z. Liu, C. Yue, C.T. Xia, and W.L. Zhang, Chin. Phys. B 25, 017201 (2016).

    Article  Google Scholar 

  23. B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, and X. Fang, Adv. Funct. Mater. 27, 1700264 (2017).

    Article  Google Scholar 

  24. P. Jaiswa, U.U. Muazzam, A.S. Pratiyush, N. Mohan, S. Raghavan, R. Muralidharan, S.A. Shivashankar, and D.N. Nath, Appl. Phys. Lett. 112, 021105 (2018).

    Article  Google Scholar 

  25. Y.C. Chen, Y.J. Lu, C.N. Lin, Y.Z. Tian, C.J. Gao, L. Dong, and C.X. Shan, J. Mater. Chem. C 6, 5727 (2018).

    Article  CAS  Google Scholar 

  26. C. Yang, H.W. Liang, Z.Z. Zhang, X.C. Xia, P.C. Tao, Y.P. Chen, H.Q. Zhang, R.S. Shen, Y.M. Luo, and G.T. Du, RSC Adv. 8, 6341 (2018).

    Article  CAS  Google Scholar 

  27. C. Yang, H.W. Liang, Z.Z. Zhang, X.C. Xia, H.Q. Zhang, R.S. Shen, Y.M. Luo, and G.T. Du, Chin. Phys. B 28, 048502 (2019).

    Article  CAS  Google Scholar 

  28. Y. C. Chen, Y. J. Lu, M. Y. Liao, Y. Z. Tian, Q. Liu, C. J. Gao, X. Yang, and C. X. Shan, Adv. Funct. Mater. 1906040 (2019).

  29. H.L. Liang, Z.X. Mei, Q.H. Zhang, L. Gu, S. Liang, Y.N. Hou, D.Q. Ye, C.Z. Gu, R.C. Yu, and X.L. Du, Appl. Phys. Lett. 98, 221902 (2011).

    Article  Google Scholar 

  30. X.H. Xie, Z.Z. Zhang, C.X. Shan, H.Y. Chen, and D.Z. Shen, Appl. Phys. Lett. 101, 081104 (2012).

    Article  Google Scholar 

  31. M.M. Fan, K.W. Liu, Z.Z. Zhang, B.H. Li, X. Chen, D.X. Zhao, C.X. Shan, and D.Z. Shen, Appl. Phys. Lett. 105, 011117 (2014).

    Article  Google Scholar 

  32. S. Han, Z.Z. Zhang, J.Y. Zhang, L.K. Wang, J. Zheng, H.F. Zhao, Y.C. Zhang, M.M. Jiang, S.P. Wang, D.X. Zhao, C.X. Shan, B.H. Li, and D.Z. Shen, Appl. Phys. Lett. 99, 242105 (2011).

    Article  Google Scholar 

  33. S. Han, Y.K. Shao, Y.M. Lu, P.J. Cao, F. Jia, Y.X. Zeng, W.J. Liu, D.L. Zhu, and X.C. Ma, J. Alloys Compd. 559, 209 (2013).

    Article  CAS  Google Scholar 

  34. S. Han, Y.K. Shao, Y.M. Lu, P.J. Cao, W.J. Liu, Y.X. Zeng, F. Jia, and D.L. Zhu, Mater. Res. Bull. 64, 76 (2015).

    Article  CAS  Google Scholar 

  35. S. Han, S.M. Liu, Y.M. Lu, P.J. Cao, W.J. Liu, Y.X. Zeng, F. Jia, X. Liu, and D.L. Zhu, J. Alloys Compd. 694, 168 (2017).

    Article  CAS  Google Scholar 

  36. X.H. Chen, S. Han, Y.M. Lu, P.J. Cao, W.J. Liu, Y.X. Zeng, F. Jia, W.Y. Xu, X.K. Liu, and D.L. Zhu, J. Alloys Compd. 747, 869 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by the National Natural Science Foundations of China (Grant Nos. 51872187, 11774241, 61704111, 21805194, 6097 6036), the Natural Science Foundation of Guangdong Province (Grant Nos. 2016A030313060, 2017A030310524), the Fundamental Research Project of Shenzhen under Grant Nos. JCYJ2018 0508163404043, JCYJ2018030507182248925 and JCYJ20180305124701756, the Science and Technology Foundation of Shenzhen (JCYJ2016-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ximing Rong.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Li, C., Rong, X. et al. Temperature-Dependent Crystallization of Ga2O3 for Ultraviolet Photodetectors. J. Electron. Mater. 49, 4581–4588 (2020). https://doi.org/10.1007/s11664-019-07924-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07924-x

Keywords

Navigation