Skip to main content
Log in

Superhydrophobic and superhydrophilic properties of laser-ablated plane and curved surfaces

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We examine the hydrophobic and hydrophilic properties of the plane and curved surfaces of different materials ablated using 5 ns laser pulses in air. The difference in the contact angles between liquid and surface of the modified graphite and AlNiCo alloy rods using different fluencies of the ablating pulses are demonstrated. The wetting contact angle of ablated graphite rod was found to be 147°, i.e., the modified curved surfaces demonstrated the superhydrophobic properties. On the other hand, the superhydrophilic properties, with 7° wetting contact angle, were demonstrated in the case of ablated aluminum alloy. A schematic model was proposed for the application of the graphite rod as a membrane for the oil–water separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.A. Otitoju, A.L. Ahmad, B.S. Ooi, J. Indus. Eng. Chem. 47, 19–40 (2017)

    Google Scholar 

  2. H.M. Van Driel, J.E. Sipe, J.F. Young, Phys. Rev. Lett. 49, 1955–1958 (1982)

    ADS  Google Scholar 

  3. Y.C. Jung, B. Bhushan, J. Phys. 22, 035104 (2010)

    Google Scholar 

  4. D.V. Ta, A. Dunn, T.J. Wasley, R.W. Kay, J. Stringer, P.J. Smith, C. Connaughton, J.D. Shephard, Appl. Surf. Sci. 357, 248–254 (2015)

    ADS  Google Scholar 

  5. P. Gregorčič, B. Šetina-Batič, M. Hočevar, Appl. Phys. A 123, 766 (2017)

    ADS  Google Scholar 

  6. A.-M. Kietzig, M.N. Mirvakili, S. Kamal, P. Englezos, S.G. Hatzikiriakos, J. Adh. Sci. Tech. 25, 2789–2809 (2011)

    Google Scholar 

  7. M.-T. Li, M. Liu, Y.-H. Yu, A.-W. Li, H.-B. Sun, Bull. Chem. Soc. Jpn. 92, 283–289 (2019)

    Google Scholar 

  8. J. Yong, F. Chen, Q. Yang, Z. Jiang, X. Hou, Adv. Mater. Inter. 5, 1701370 (2018)

    Google Scholar 

  9. Č. Donik, A. Kocijan, I. Paulin, M. Hočevar, P. Gregorčič, M. Godec, Appl. Surf. Sci. 453, 383–393 (2018)

    ADS  Google Scholar 

  10. U. Trdan, M. Hočevar, P. Gregorčič, Corros. Sci. 123, 21–26 (2017)

    Google Scholar 

  11. M. Conradi, T. Sever, P. Gregorčič, A. Kocijan, Coatings 9, 592 (2019)

    Google Scholar 

  12. M. Zupančič, M. Steinbücher, P. Gregorčič, I. Golobič, Appl. Ther. Eng. 91, 288–297 (2015)

    Google Scholar 

  13. P. Gregorčič, M. Zupančič, I. Golobič, Sci. Rep. 8, 7461 (2018)

    ADS  Google Scholar 

  14. M. Zupančič, M. Može, P. Gregorčič, I. Golobič, Appl. Surf. Sci. 399, 480–490 (2017)

    ADS  Google Scholar 

  15. S.V. Kirner, N. Slachciak, A.M. Elert, M. Griepentrog, D. Fischer, A. Hertwig, M. Sahre, I. Dörfel, H. Sturm, S. Pentzien, R. Koter, D. Spaltmann, J. Krüger, J. Bonse, Appl. Phys. A 124, 326 (2018)

    ADS  Google Scholar 

  16. J. Bonse, S. Kirner, M. Griepentrog, D. Spaltmann, J. Krüger, Mater. 11, 801 (2018)

    Google Scholar 

  17. M. Conradi, A. Drnovšek, P. Gregorčič, Sci. Rep. 8, 7457 (2018)

    ADS  Google Scholar 

  18. J. Noh, J.-H. Lee, S. Na, H. Lim, D.H. Jung, Jpn. J. Appl. Phys. 49, 106502 (2010)

    ADS  Google Scholar 

  19. J. Bekesi, J.J.J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann, P. Simon, Appl. Phys. A 99, 691–695 (2010)

    ADS  Google Scholar 

  20. A. Rosenkranz, S. Fleischmann, C. Gachot, F. Mücklich, Adv. Eng. Mat. 17, 1645–1651 (2015)

    Google Scholar 

  21. Y.-Q. Liu, D.-D. Han, Z.-Z. Jiao, Y. Liu, H.-B. Jiang, X.-H. Wu, H. Ding, Y.-L. Zhang, H.-B. Sun, Nanoscale 9, 17933–17938 (2017)

    Google Scholar 

  22. K. Yin, D. Chu, X. Dong, C. Wang, J.-A. Duan, J. He, Nanoscale 9, 14229–14235 (2017)

    Google Scholar 

  23. J. Yong, Y. Fang, F. Chen, J. Huo, Q. Yang, H. Bian, G. Du, X. Hou, Appl. Surf. Sci. 389, 1148–1155 (2016)

    ADS  Google Scholar 

  24. S. Ye, Q. Cao, Q. Wang, T. Wang, Q. Peng, Sci. Rep. 6, 1–9 (2016)

    Google Scholar 

  25. G. Li, H. Fan, F. Ren, C. Zhou, Z. Zhang, B. Xu, S. Wu, Y. Hu, W. Zhu, J. Li, Y. Zeng, X. Li, J. Chu, D. Wu, J. Mater. Chem. A 4, 18832–18840 (2016)

    Google Scholar 

  26. A.S. Alnaser, S.A. Khan, R.A. Ganeev, E. Stratakis, Appl. Sci. 9, 1554 (2019)

    Google Scholar 

  27. C.-V. Ngo, D.-M. Chun, Appl. Surf. Sci. 435, 974–982 (2018)

    ADS  Google Scholar 

  28. C.-V. Ngo, D.-M. Chun, Adv. Eng. Mater. 20, 1701086 (2018)

    Google Scholar 

  29. L. Zhao, K. Zhao, W.-G. Yan, Z. Liu, Mater. 11, 2318 (2018)

    Google Scholar 

  30. S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, L. Chen, Mater. Sci. Eng. 69, 1–35 (2010)

    Google Scholar 

  31. S. Li, C. Yu, J. Yang, C. Zhao, M. Zhang, H. Huang, Z. Liu, W. Guo, J. Qiu, Energy Environ. Sci. 10, 1958–1965 (2017)

    Google Scholar 

  32. M. Ma, R.M. Hill, Current Opinion. Col. Inter. Sci. 11, 193–202 (2006)

    Google Scholar 

  33. R. Asmatulu, W.S. Khan, R.J. Reddy, M. Ceylan, Pol. Compos. 36, 1565–1573 (2014)

    Google Scholar 

  34. T.S. Meiron, A. Marmur, I.S. Saguy, J. Col. Inter. Sci. 274, 637–644 (2004)

    ADS  Google Scholar 

  35. L.J.D. Frink, A.G. Salinger, J. Chem. Phys. 110, 5969–5977 (1999)

    ADS  Google Scholar 

  36. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546–551 (1944)

    Google Scholar 

  37. S. Wang, L. Jiang, Adv. Mater. 19, 3423–3424 (2007)

    ADS  Google Scholar 

  38. N. Nuraje, W.S. Khan, Y. Lei, M. Ceylan, R. Asmatulu, J. Mater. Chem. A 1, 1929–1946 (2013)

    Google Scholar 

  39. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C Photochem. Rev. 1, 1–21 (2000)

    Google Scholar 

  40. J. Drelich, E. Chibowski, Langmuir 26, 18621–18623 (2010)

    Google Scholar 

  41. K.J. Lu, Y. Chen, T.-S. Chung, Water Res. 162, 64–77 (2019)

    Google Scholar 

  42. N. Nuraje, R. Asmatulu, R.E. Cohen, M.F. Rubner, Langmuir 27, 782–791 (2011)

    Google Scholar 

  43. R.K. Gupta, G.J. Dunderdale, M.W. England, A. Hozumi, J. Mater. Chem. A 5, 16025–16058 (2017)

    Google Scholar 

  44. J. Guo, X. Ma, X. Si, Z. Yang, J. Zhao, IOP Conference Series. Mater. Sci. Eng. 538, 012021 (2019)

    Google Scholar 

  45. U. Zulfiqar, S.Z. Hussain, T. Subhani, I. Hussain, Habib-ur-Rehman Col Surf A Physicochem Eng Asp. 539, 391–398 (2018)

    Google Scholar 

  46. J. Cui, A. Xie, S. Zhou, S. Liu, Q. Wang, Y. Wu, M. Meng, J. Lang, Z. Zhou, Y. Yan, J. Coll. Inter. Sci. 1, 278–286 (2019)

    ADS  Google Scholar 

  47. C. Kunz, T.N. Büttner, B. Naumann, A.V. Boehm, E. Gnecco, J. Bonse, C. Neumann, A. Turchanin, F.A. Müller, S. Gräf, Carbon 133, 176–185 (2018)

    Google Scholar 

  48. R. Ramachandran, M. Kozhukhova, K. Sobolev, M. Nosonovsky, Entropy 18, 132 (2016)

    ADS  Google Scholar 

  49. J. Long, M. Zhong, H. Zhang, P. Fan, J. Colloid Inter. Sci. 441, 1 (2015)

    ADS  Google Scholar 

  50. J. Long, M. Zhong, P. Fan, D. Gong, H. Zhang, J. Laser Appl. 27, S29107 (2015)

    Google Scholar 

  51. L.B. Boinovich, A.M. Emelyanenko, K.A. Emelyanenko, A.G. Domantovsky, A.A. Shiryaev, Appl. Surf. Sci. 379, 111 (2016)

    ADS  Google Scholar 

  52. A. Strålin, T. Hjertberg, Appl. Surf. Sci. 74, 263–275 (1994)

    ADS  Google Scholar 

  53. V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnol. 17, 3234–3238 (2006)

    ADS  Google Scholar 

  54. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049–4054 (2008)

    Google Scholar 

  55. A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Langmuir 25, 4821–4827 (2009)

    Google Scholar 

  56. M. Može, M. Zupančič, M. Hočevar, I. Golobič, P. Gregorčič, Appl. Surf. Sci. 490, 220–230 (2019)

    ADS  Google Scholar 

  57. V.D. Ta, A. Dunn, T.J. Wasley, J. Li, R.W. Kay, J. Stringer, P.J. Smith, E. Esenturk, C. Connaughton, J.D. Shephard, Appl. Surf. Sci. 365, 153–159 (2016)

    ADS  Google Scholar 

  58. P. Gregorčič, M. Conradi, L. Hribar, M. Hočevar, Mater. 11, 2240 (2018)

    Google Scholar 

  59. T.F. Qahtan, M.A. Gondal, I.O. Alade, M.A. Dastageer, Sci. Rep. 7, 7531–7538 (2017)

    ADS  Google Scholar 

  60. X. Deng, L. Mammen, H.J. Butt, D. Vollmer, Science 335, 67–70 (2012)

    ADS  Google Scholar 

  61. D. Sun, W. Wang, D. Yu, Cellulose 24, 4519–4531 (2017)

    Google Scholar 

  62. J. Long, P. Fan, M. Zhong, H Zhang Y Xie, C Lin. Appl Surf. Sci 311, 461–467 (2014)

    ADS  Google Scholar 

  63. G.S. Boltaev, R.A. Ganeev, Sh Reyimboyev, B.R. Sobirov, T.Y. Shermatov, N.S. Khalilova, V.V. Kim, Z.T. Azamatov, M. Iqbal, ShA Khan, A.S. Alnaser, J. Phys. D.: Appl. Phys. 53, 075301 (2020)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. A. Ganeev or A. S. Alnaser.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boltaev, G.S., Khan, S.A., Ganeev, R.A. et al. Superhydrophobic and superhydrophilic properties of laser-ablated plane and curved surfaces. Appl. Phys. A 126, 62 (2020). https://doi.org/10.1007/s00339-019-3245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3245-x

Keywords

Navigation