Skip to main content
Log in

Determination of a suitable index for a solvent via two-column extractive distillation using a heuristic method

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The traditional approach to solvent selection in the extractive distillation process strictly focuses on the change in the relative volatility of light-heavy components induced by the solvent. However, the total annual cost of the process may not be minimal when the solvent induces the largest change in relative volatility. This work presents a heuristic method for selecting the optimal solvent to minimize the total annual cost. The functional relationship between the relative volatility and the total annual cost is established, where the main factors, such as the relative volatility of the light-heavy components and the relative volatility of the heavy-component solvent, are taken into account. Binary azeotropic mixtures of methanol-toluene and methanol-acetone are separated to verify the feasibility of the model. The results show that using the solvent with the minimal two-column extractive distillation index, the process achieves a minimal total annual cost. The method is conducive for sustainable advancements in chemistry and engineering because a suitable solvent can be selected without simulation verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

x m :

Mole fraction of component m

LK:

Light key component

HK:

Heavy key component

F / C :

Ratio of the total annual cost and a constant

A :

Area of heat exchange, m2

VLE :

Vapor liquid equilibrium

F :

Feed flow rate, kg · h−1

B i :

Bottom flow rate, kmol · h−1

REC :

Solvent flow rate, kg · h−1

ID :

Diameter of the column, m

NF :

Location of fresh feed tray

N R :

Location of solvent feed tray

References

  1. Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 316

    Article  Google Scholar 

  2. Wang Y L, Zhang Z, Xu D F, Liu W, Zhu Z Y. Design and control of pressure-swing distillation for azeotropes with different types of boiling behavior at different pressures. Journal of Process Control, 2016, 42: 59–76

    Article  CAS  Google Scholar 

  3. Zhu Z Y, Wang L L, Ma Y X, Wang W L, Wang Y L. Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation. Computers & Chemical Engineering, 2015, 76: 137–149

    Article  CAS  Google Scholar 

  4. Pla-Franco J, Lladosa E, Loras S, Montón J B. Thermodynamic analysis and process simulation of ethanol dehydration via heterogeneous azeotropic distillation. Industrial & Engineering Chemistry Research, 2014, 53(14): 6084–6093

    Article  CAS  Google Scholar 

  5. Ahmadian Behrooz H. Robust synthesis of the pressure-swing distillation process under azeotropic feed composition disturbance—study of the tetrahydrofuran/methanol system. Computers & Chemical Engineering, 2017, 104: 211–230

    Article  CAS  Google Scholar 

  6. Yu H, Ye Q, Xu H, Zhang H, Dai X. Design and control of dividing-wall column for tert-butanol dehydration system via heterogeneous azeotropic distillation. Industrial & Engineering Chemistry Research, 2015, 54(13): 3384–3397

    Article  CAS  Google Scholar 

  7. Li J, Wang T. Coupling reaction and azeotropic distillation for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Chemical Engineering and Processing: Process Intensification, 2010, 49(5): 530–535

    Article  CAS  Google Scholar 

  8. Ma K, Yu M X, Dai Y, Ma Y X, Gao J, Cui P Z, Wang Y L. Control of an energy-saving side-stream extractive distillation process with different disturbance conditions. Separation and Purification Technology, 2019, 210: 195–208

    Article  CAS  Google Scholar 

  9. Luyben W L. Control comparison of conventional and thermally coupled ternary extractive distillation processes. Chemical Engineering Research & Design, 2016, 106: 253–262

    Article  CAS  Google Scholar 

  10. Plesu V, Cantero S, Bonet-Ruiz A E, Bonet J, Iancu P, Llorens J. A heuristic for extractive agent flow rate in extractive distillation. Chemical Engineering Transactions, 2018, 70: 1849–1854

    Google Scholar 

  11. Tauanov Z, Shah D, Inglezakis V, Jamwal P K. Hydrothermal synthesis of zeolite production from coal fly ash: A heuristic approach and its optimization for system identification of conversion. Journal of Cleaner Production, 2018, 182: 616–623

    Article  CAS  Google Scholar 

  12. Golenko-Ginzburg D, Gonik A, Papic L. Developing cost-optimization production control model via simulation. Mathematics and Computers in Simulation, 1999, 49(6): 335–351

    Article  Google Scholar 

  13. Luyben W L. Improved design of an extractive distillation system with an intermediate-boiling solvent. Separation and Purification Technology, 2015, 156: 336–347

    Article  CAS  Google Scholar 

  14. Kiss A A, David J, Suszwalak P C. Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Separation and Purification Technology, 2012, 86: 70–78

    Article  CAS  Google Scholar 

  15. Luyben W L. Comparison of extractive distillation and pressure-swing distillation for acetone/chloroform separation. Computers & Chemical Engineering, 2013, 50: 1–7

    Article  CAS  Google Scholar 

  16. Zhang Z G, Huang D H, Lv M, Jia P, Sun D Z, Li W X. Entrainer selection for separating tetrahydrofuran/water azeotropic mixture by extractive distillation. Separation and Purification Technology, 2014, 122: 73–77

    Article  CAS  Google Scholar 

  17. Li G Z, Bai P. New operation strategy for separation of ethanol-water by extractive distillation. Industrial & Engineering Chemistry Research, 2012, 51(6): 2723–2729

    Article  CAS  Google Scholar 

  18. Zhao Y T, Ma K, Bai W T, Du D Q, Zhu Z Y, Wang Y L, Gao J. Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy, 2018, 148: 296–308

    Article  CAS  Google Scholar 

  19. Quijada-Maldonado E, Meindersma G W, de Haan A B. Pilot plant study on the extractive distillation of toluene-methylcyclohexane mixtures using NMP and the ionic liquid [hmim][TCB] as solvents. Separation and Purification Technology, 2016, 166: 196–204

    Article  CAS  Google Scholar 

  20. Ebrahimzadeh E, Matagi J, Fazlollahi F, Baxter L L. Alternative extractive distillation system for CO2-ethane azeotrope separation in enhanced oil recovery processes. Applied Thermal Engineering, 2016, 96: 39–47

    Article  CAS  Google Scholar 

  21. Ebrahimzadeh E, Baxter L L. Plant-wide control of coupled distillation columns with partial condensers. Applied Thermal Engineering, 2016, 102: 785–799

    Article  CAS  Google Scholar 

  22. Aniya V, De D, Singh A, Satyavathi B. Design and operation of extractive distillation systems using different class of entrainers for the production of fuel grade tert-butyl Alcohol: A techno-economic assessment. Energy, 2018, 144: 1013–1025

    Article  CAS  Google Scholar 

  23. An Y, Li W S, Li Y, Huang S Y, Ma J, Shen C L, Xu C J. Design/optimization of energy-saving extractive distillation process by combining preconcentration column and extractive distillation column. Chemical Engineering Science, 2015, 135: 166–178

    Article  CAS  Google Scholar 

  24. Rodríguez-Donis I, Gerbaud V, Joulia X. Entrainer selection rules for the separation of azeotropic and close-boiling-temperature mixtures by homogeneous batch distillation process. Industrial & Engineering Chemistry Research, 2001, 40(12): 2729–2741

    Article  CAS  Google Scholar 

  25. Deorukhkar O A, Rahangdale T B, Mahajan Y S. Entrainer selection approach for distillation column. International Journal of Chemical Engineering Research, 2016, 8: 29–38

    Google Scholar 

  26. Malone M F, Glinos K, Marquez F E, Douglas J M. Simple, analytical criteria for the sequencing of distillation columns. AIChE Journal. American Institute of Chemical Engineers, 1985, 31(4): 683–689

    Article  CAS  Google Scholar 

  27. Rod V, Marek J. Separation sequences in multicomponent rectification. Collection of Czechoslovak Chemical Contributions, 1959, 24(10): 3240–3248

    Article  CAS  Google Scholar 

  28. Zhang X, Li X, Li G X, Zhu Z Y, Wang Y L, Xu D M. Determination of an optimum entrainer for extractive distillation based on an isovolatility curve at different pressures. Separation and Purification Technology, 2018, 201: 79–95

    Article  CAS  Google Scholar 

  29. Porter K E, Momoh S O. Finding the optimum sequence of distillation columns-an equation to replace the “rules of thumb” (heuristics). Chemical Engineering Journal, 1991, 46(3): 97–108

    Article  CAS  Google Scholar 

  30. Li Y, Xu C J. Pressure-swing distillation for separating pressure-insensitive minimum boiling azeotrope methanol/toluene via introducing a light entrainer: Design and control. Industrial & Engineering Chemistry Research, 2017, 56(14): 4017–4037

    Article  CAS  Google Scholar 

  31. Underwood A J V. Fractional distillation of multi-component mixtures. Chemical Engineering Progress, 1948, 44: 603–614

    CAS  Google Scholar 

  32. Fenske M R, Quiggle D, Tongberg C O. Composition of straight-run pennsylvania gasoline. Industrial & Engineering Chemistry, 1932, 24(4): 408–418

    Article  CAS  Google Scholar 

  33. Wang Y, Zhang X, Liu X B, Bai W T, Zhu Z Y, Wang Y L, Gao J. Control of extractive distillation process for separating heterogenerous ternary azeotropic mixture via adjusting the solvent content. Separation and Purification Technology, 2018, 191: 8–26

    Article  CAS  Google Scholar 

  34. Sadegh N, Stenby E H, Thomsen K. Thermodynamic modeling of CO2 absorption in aqueous N-Methyldiethanolamine using Extended UNIQUAC model. Fuel, 2015, 144: 295–306

    Article  CAS  Google Scholar 

  35. Gmehling J, Menke J, Krafczyk J, Fischer K. Azeotropic Data. Wancouver: Wiley-VCH, 1994

    Google Scholar 

  36. Muñoz R, Monton J B, Burguet M C, De la Torre J. Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization. Separation and Purification Technology, 2006, 50(2): 175–183

    Article  CAS  Google Scholar 

  37. Arifin S, Chien I L. Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer. Industrial & Engineering Chemistry Research, 2008, 47(3): 790–803

    Article  CAS  Google Scholar 

  38. Douglas J M. Conceptual design of chemical processes. New York: McGraw-Hill, 1988

    Google Scholar 

  39. Extractive distillation optimization software. V1.0. Qingdao University of Science & Technology, 2015

  40. Li L M, Guo L J, Tu Y Q, Yu N, Sun L Y, Tian Y Y, Li Q S. Comparison of different extractive distillation processes for 2-methoxyethanol/toluene separation: Design and control. Computers & Chemical Engineering, 2017, 99: 117–134

    Article  CAS  Google Scholar 

  41. Liang S S, Cao Y J, Liu X Z, Li X, Zhao Y T, Wang Y K, Wang Y L. Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control. Chemical Engineering Research & Design, 2017, 117: 318–335

    Article  CAS  Google Scholar 

  42. Zhu Z Y, Xu D F, Liu X Z, Zhang Z, Wang Y L. Separation of acetonitrile/methanol/benzene ternary azeotrope via triple column pressure-swing distillation. Separation and Purification Technology, 2016, 169: 66–77

    Article  CAS  Google Scholar 

  43. Modla G, Lang P. Separation of an acetone-methanol mixture by pressure-swing batch distillation in a double-column system with and without thermal integration. Industrial & Engineering Chemistry Research, 2010, 49(8): 3785–3793

    Article  CAS  Google Scholar 

  44. Gil I D, Botia D C, Ortiz P, Sanchez O F. Extractive distillation of acetone/methanol mixture using water as entrainer. Industrial & Engineering Chemistry Research, 2009, 48(10): 4858–4865

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 21776145 and 21676152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinglong Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Li, G., Dai, Y. et al. Determination of a suitable index for a solvent via two-column extractive distillation using a heuristic method. Front. Chem. Sci. Eng. 14, 824–833 (2020). https://doi.org/10.1007/s11705-019-1867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1867-3

Keywords

Navigation