Skip to main content
Log in

Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The conversion of n-hexane and methanol into value-added aromatic compounds is a promising method for their industrially relevant utilization. In this study, intergrown ZSM-5/ZSM-11 crystals were synthesized and their resulting catalytic performance was investigated and compared to those of the isolated ZSM-5 and ZSM-11 zeolites. The physicochemical properties of ZSM-5/ZSM-11 intergrown zeolite were analyzed using X-ray diffraction, N2 isothermal adsorption-desorption, the temperature-programmed desorption of ammonium, scanning electron microscopy, Fourier transform infrared spectra of adsorbed pyridine, and nuclear magnetic resonance of 27Al, and compared with those of the ZSM-5 and ZSM-11 zeolites. The catalytic performances of the materials were evaluated during the co-feeding reaction of methanol and n-hexane under the fixed bed conditions of 400°C, 0.5 MPa (N2), methanol:n-hexane = 7:3 (mass ratio), and weight hourly space velocity = 1 h−1 (methanol). Compared to the ZSM-5 and ZSM-11 zeolites, the ZSM-5/ZSM-11 zeolite exhibited the largest specific surface area, a unique crystal structure, moderate acidity, and suitable Brønsted/Lewis acid ratio. The evaluation results showed that ZSM-5/ZSM-11 catalyst exhibited better catalytic reactivity than the ZSM-5 and ZSM-11 catalysts in terms of methanol conversion rate, n-hexane conversion rate, and aromatic selectivity. The outstanding catalytic property of the intergrown ZSM-5/ZSM-11 was attributed to the enhanced diffusion associated with its unique crystal structure. The benefit of using zeolite intergrowth in the co-conversion of methanol and alkanes offers a novel route for future catalyst development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Kartick P, Sourav G, Milan K. A facile synthesis of ZSM-11 zeolite particles using rice husk ash as silica source. Materials Letters, 2012, 87: 97–89

    Article  Google Scholar 

  2. Zhang W, Gao S, Xie S, Liu H, Zhu X, Shang Y, Liu S, Xu L, Zhang Y. A shaped binderless ZSM-11 zeolite catalyst for direct amination of isobutene to tert-butylamine. Chinese Journal of Catalysis, 2017, 38(1): 168–175

    Article  CAS  Google Scholar 

  3. Wang Y, Ma J, Ren F, Du J, Li R. Hierarchical architectures of ZSM-5 nanocrystalline aggregates with particular catalysis for lager molecule reaction. Microporous and Mesoporous Materials, 2017, 240: 22–30

    Article  CAS  Google Scholar 

  4. Song B, Li Y, Cao G, Sun Z, Han X. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction. Frontiers of Chemical Science and Engineering, 2017, 11(4): 564–574

    Article  CAS  Google Scholar 

  5. Wei Z, Xia T, Liu M, Cao Q, Xu Y, Zhu K, Zhu X. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450–460

    Article  CAS  Google Scholar 

  6. Xu S, Zhang X, Cheng D, Chen F, Ren X. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789

    Article  CAS  Google Scholar 

  7. Yu Q, Cui C, Zhang Q, Chen J, Li Y, Sun J, Li C, Cui Q, Yang C, Shan H. Hierarchical ZSM-11 with intergrowth structures: Synthesis, characterization and catalytic properties. Journal of Energy Chemistry, 2013, 22(5): 761–768

    Article  CAS  Google Scholar 

  8. Jia Y, Wang J, Zhang K, Chen G, Yang Y, Liu S, Ding C, Meng Y, Liu P. Hierarchical ZSM-5 zeolite synthesized via dry gel conversion-steam assisted crystallization process and its application in aromatization of methanol. Powder Technology, 2018, 28: 415–429

    Article  Google Scholar 

  9. Kokotailo G T, Woodbury N J. US Patent, 4229424, 1979

  10. Wang X, Chen H, Meng F, Gao F, Sun C, Sun L, Wang S, Wang L, Wang Y. CTAB resulted direct synthesis and properties of hierarchical ZSM-11/5 composite zeolite in the absence of template. Microporous and Mesoporous Materials, 2017, 243: 271–280

    Article  CAS  Google Scholar 

  11. Zhang L, Liu S, Xie S, Xu L. Organic template-free synthesis of ZSM-5/ZSM-11 co-crystalline zeolite. Microporous and Mesoporous Materials, 2012, 147(1): 117–126

    Article  Google Scholar 

  12. Zhang L, Liu H, Li X, Xie S, Wang Y, Xin W, Liu S, Xu L. Differences between ZSM-5 and ZSM-11 zeolite catalysts in 1-hexene aromatization and isomerization. Fuel Processing Technology, 2010, 91(5): 449–155

    Article  CAS  Google Scholar 

  13. Jablonski G, Sand L, Gard J. Synthesis and identification of ZSM-5/ZSM-11 pentasil intergrowth structures. Zeolites, 1986, 6(5): 396–402

    Article  CAS  Google Scholar 

  14. Conte M, Xu B, Davies T, Bartley J, Carley A, Taylor S, Khalid K, Hutchings G. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials, 2012, 164: 207–213

    Article  CAS  Google Scholar 

  15. Xin Y, Qi P, Duan X, Lin H, Yuan Y. Enhanced performance of Zn-Sn/HZSM-5 catalyst for the conversion of methanol to aromatics. Catalysis Letters, 2013, 143(8): 798–806

    Article  CAS  Google Scholar 

  16. Zhang J, Qian W, Kong C, Wei F. Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst. ACS Catalysis, 2015, 5(5): 2982–2988

    Article  CAS  Google Scholar 

  17. Zhang G, Bai T, Chen T, Fan W, Zhang X. Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts. Industrial & Engineering Chemistry Research, 2014, 53(39): 14932–14940

    Article  CAS  Google Scholar 

  18. Wang T, Tang X, Huang X, Qian W, Cui Y, Hui X, Yang W, Wei F. Conversion of methanol to aromatics in fluidized bed reactor. Catalysis Today, 2014, 233: 8–13

    Article  CAS  Google Scholar 

  19. Wang N, Sun W, Hou Y, Ge B, Hu L, Nie J, Qian W, Wei F. Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons. Journal of Catalysis, 2018, 360: 89–96

    Article  CAS  Google Scholar 

  20. Mier D, Aguayo A, Gayubo A, Olazar M, Bilbao J. Synergies in the production of olefins by combined cracking of n-butane and methanol on a HZSM-5 zeolite catalyst. Chemical Engineering Journal, 2010, 160(2): 760–769

    Article  CAS  Google Scholar 

  21. Yang K, Zhu L, Zhang J, Huo X, Lai W, Lian Y, Fang W. Co-aromatization of n-butane and methanol over PtSnK-Mo/ZSM-5 zeolite catalysts: The promotion effect of ball-milling. Catalysis, 2018, 307(8): 3–20

    Google Scholar 

  22. Chang F, Wei Y, Liu X, Qi Y, Zhang D, He Y, Liu Z. An improved catalytic cracking of n-hexane via methanol coupling reaction over HZSM-5 zeolite catalysts. Catalysis Letters, 2006, 106(3–4): 171–176

    Article  CAS  Google Scholar 

  23. Chang F, Wei Y, Liu X, Zhao Y, Xu L, Sun Y, Zhang D, He Y, Liu Z. A mechanistic investigation of the coupled reaction of n-hexane and methanol over HZSM-5. Applied Catalysis A, General, 2007, 328(2): 163–173

    Article  CAS  Google Scholar 

  24. Aguayo A, Castaño P, Mier D, Gayubo A, Olazar M, Bilbao J. Effect of cofeeding butane with methanol on the deactivation by coke of a HZSM-5 zeolite catalyst. Industrial & Engineering Chemistry Research, 2011, 50(17): 9980–9988

    Article  CAS  Google Scholar 

  25. Lücke B, Martin A, Günschel H, Nowark S. CMHC: Coupled methanol hydrocarbon cracking formation of lower olefins from methanol and hydrocarbons over modified zeolites. Microporous and Mesoporous Materials, 1999, 29: 145–157

    Article  Google Scholar 

  26. Mier D, Aguayo A, Gayubo A, Olazar M, Bilbao J. Cataylst discrimination for olefin production by coupled methanol/n-butane cracking. Applied Catalysis A, General, 2010, 383(1–2): 202–210

    Article  CAS  Google Scholar 

  27. Song C, Liu K, Zhang D, Liu S, Li X, Xie S, Xu L. Effect of cofeeding n-butane with methanol on aromatization performance and coke formation over a Zn loaded ZSM-5/ZSM-11 zeolite. Applied Catalysis A, General, 2014, 470: 15–23

    Article  CAS  Google Scholar 

  28. Song C, Li X, Zhu X, Liu S, Chen F, Liu F, Xu L. Influence of the state of Zn species over Zn-ZSM-5/ZSM-11 on the coupling effects of cofeeding n-butane with methanol. Applied Catalysis A, General, 2016, 519: 48–55

    Article  CAS  Google Scholar 

  29. Su C, Qian W, Xie Q, Cui Y, Tang X, Xu X, Wang T, Huang X, Wei F. Conversion of methanol with C5-C6 hydrocarbons into aromatics in a two-stage fluidized bed reactor. Catalysis Today, 2016, 264: 63–69

    Article  CAS  Google Scholar 

  30. Dai W, Yang L, Wang C, Wang X, Wu G, Guan N, Obenaus U, Hunger M, Li L. Effect of n-butanol cofeeding on the methanol to aromatics conversion over Ga-modified nano H-ZSM-5 and its mechanistic interpretation. ACS Catalysis, 2018, 8(2): 1352–1362

    Article  CAS  Google Scholar 

  31. Gong T, Zhang X, Bai T, Zhang Q, Tao L, Qi M, Duan C, Zhang L. Coupling conversion of methanol and C4 hydrocarbon to propylene on La-modified HZSM-5 zeolite catalysts. Industrial & Engineering Chemistry Research, 2012, 51(42): 13589–13598

    Article  CAS  Google Scholar 

  32. Li P, Zhang W, Han X, Bao X. Conversion of methanol to hydrocarbons over phosphorus-modified ZSM-5/ZSM-11 intergrowth zeolites. Catalysis Letters, 2010, 134(1–2): 124–130

    Article  CAS  Google Scholar 

  33. Brunauer S, Emmett P, Teller E. Adsorption of gases in multi-molecular layers. Journal of the American Chemical Society, 1938, 60(2): 309–319

    Article  CAS  Google Scholar 

  34. De B, Linsen B, Osinga T. Studies on pore systems in catalysts: VI. The universal t curve. Journal of Catalysis, 1965, 4(6): 319–323

    Google Scholar 

  35. Zhang X, Wang J, Zhong J, Liu A, Gao J. Characterization and catalytic performance of SAPO-11/Hβ composite molecular sieve compared with the mechanical mixture. Microporous and Mesoporous Materials, 2008, 108(1–3): 13–21

    Article  CAS  Google Scholar 

  36. Emeis C. Determination of integrated molar extinction coefficient for infrared absorption bands of pyridine adsorbed on solid acid catalysts. Journal of Catalysis, 1993, 141(2): 347–354

    Article  CAS  Google Scholar 

  37. Hughes T, White H. A study of the surface structure of decationized Y zeolite by quantitative infrared spectroscopy. Journal of Physical Chemistry, 1967, 7(71): 2192–2201

    Article  Google Scholar 

  38. Li J, Liu M, Li S, Guo X, Song C. Influence of diffusion and acid properties on methane and propane selectivity in methanol-to-olefins reaction. Industrial & Engineering Chemistry Research, 2019, 58(5): 1896–1905

    Article  CAS  Google Scholar 

  39. Jin D, Ye G, Zheng J, Yang W, Zhu K, Coppens M, Zhou X. Hierarchical silicoaluminophosphatecatalysts with enhanced hydroisomerization selectivity by directing the orientated assembly of premanufactured building blocks. ACS Catalysis, 2017, 7(9): 5887–5902

    Article  CAS  Google Scholar 

  40. Serrano D, Aguado J, Morales G, Rodrıíguez J, Peral A, Thommes M, Epping J, Chmelka B. Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chemistry of Materials, 2009, 21(4): 641–654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the National Nature Science Foundation of China (Grant No. 2177606) and Technology administration of the Department of PetroChina Company Limited (2016-24308).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yarong Xu or Xuedong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Xu, Y., Jin, Z. et al. Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst. Front. Chem. Sci. Eng. 14, 783–792 (2020). https://doi.org/10.1007/s11705-019-1868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1868-2

Keywords

Navigation