Skip to main content
Log in

Synergistic, antagonistic and additive antioxidant effects in the binary mixtures

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Food which is consumed by living organisms contains many antioxidants often with different antioxidant abilities. In the case of antioxidants mixture its potential is not always an additive value of antioxidant properties of their individual ingredients. Despite the extensive research there is still no knowledge about the reasons for observing the antioxidant antagonism and synergism in mixtures. The paper is a review which contains the literature information available about the antioxidant activity of binary mixtures. The manuscript presents different examples of natural mixtures with the literature proposed explanation of the observed antioxidant effects. It also describes different factors (i.e.: applied method, mechanisms of radical neutralization, composition of reacting mixture—chemical structures of antioxidants, concentration and molecular ratio, applied solvent, treatment of sample or reaction time) which have influence on the observed antioxidant effects. Additionally, the ways of expressing of the antioxidant effects are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-Azobis(2-methylpropionamidine) dihydrochloride

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt

CUPRAC:

Cupric reducing antioxidant capacity

DHS:

Delipidized human serum

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

FRAP:

Ferric reducing antioxidant power

IF:

Interaction index/interaction factor

ME:

Mixture effect

ORAC:

Oxygen radical absorption capacity

PCL:

Phosphatidylcholine liposomes

ROS:

Reactive oxygen species

References

  • Almajano MP, Delgado ME, Gordon MH (2007) Albumin causes a synergistic increase in the antioxidant activity of green tea catechins in oil-in-water emulsions. Food Chem 102:1375–1382

    CAS  Google Scholar 

  • Aoun M, Makris DP (2012) Binary mixtures of natural polyphenolic antioxidants with ascorbic acid: impact of interactions on the antiradical activity. Int Food Res J 19:603–606

    CAS  Google Scholar 

  • Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, Berker KI, Özyurt D (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12:1496–1547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becker EM, Ntouma G, Skibsted LH (2007) Synergism and antagonism between quercetin and other chain-breaking antioxidants in lipid systems of increasing structural organisation. Food Chem 103:1288–1296

    CAS  Google Scholar 

  • Berenbaum MC (1977) Synergy, additivism and antagonism in immunosuppression. A critical review. Clin Exp Immunol 28:1–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Błauż A, Pilaszek T, Grzelak A, Dragan A, Bartosz G (2008) Interaction between antioxidants in assays of total antioxidant capacity. Food Chem Toxicol 46:2365–2368

    PubMed  Google Scholar 

  • Brannan RG, Connolly BI, Decker EA (2001) Peroxynitrite: a potential initiator of lipid oxidation in food. Trends Food Sci Technol 12:164–173

    CAS  Google Scholar 

  • Choe E, Min DB (2009) Mechanisms of antioxidants in the oxidation of foods. Compr Rev Food Sci Technol 8:345–358

    CAS  Google Scholar 

  • Choi JS, Chung HY, Kang SS, Jung MJ, Kim JW No et al (2002) The structure-activity relationship of flavonoids as scavenger of peroxynitrite. Phytother Res 16:232–235

    CAS  PubMed  Google Scholar 

  • Chou TC (1998) Drug combinations: from laboratory to practice. J Lab Clin Med 131:6–8

    Google Scholar 

  • Chou TC (2002) Letter to the editor: synergy determination issues. J Virol 76:10577–10578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chou TC (2018) The combination index (CI < 1) as the definition of synergism and of synergy claims. Synergy 7:49–50

    Google Scholar 

  • Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    CAS  PubMed  Google Scholar 

  • Choueiri L, Chedea VS, Calokerinos A, Kefalas P (2012) Antioxidant/pro-oxidant properties of model phenolic compounds. Part II: studies on mixtures of polyphenols at different molar ratios by chemiluminescence and LC–MS. Food Chem 133:1039–1044

    CAS  Google Scholar 

  • Cirico TL, Omaye ST (2006) Additive or synergetic effects of phenolic compounds on human low density lipoprotein oxidation. Food Chem Toxicol 44:510–516

    CAS  PubMed  Google Scholar 

  • Dawidowicz AL, Olszowy M (2010) Influence of some experimental variables and matrix components in the determination of antioxidant properties by β-carotene bleaching assay: experiments with BHT used as standard antioxidant. Eur Food Res Technol 231:835–840

    CAS  Google Scholar 

  • Dawidowicz AL, Olszowy M (2011) Antioxidant properties of BHT estimated by ABTS assay in systems differing in pH or metal ion or water concentration. Eur Food Res Technol 232:837–842

    CAS  Google Scholar 

  • Dawidowicz AL, Olszowy M (2012) Mechanism change in estimating of antioxidant activity of phenolic compounds. Talanta 97:312–317

    CAS  PubMed  Google Scholar 

  • Dawidowicz AL, Olszowy M (2013) The importance of solvent type in estimating antioxidant properties of phenolic compounds by ABTS assay. Eur Food Res Technol 236:1099–1105

    CAS  Google Scholar 

  • Dawidowicz AL, Olszowy M (2015) Depletion/protection of β-carotene in estimating antioxidant activity by β-carotene bleaching assay. J Food Sci Technol 52:7321–7328

    CAS  Google Scholar 

  • Dawidowicz AL, Wianowska D, Olszowy M (2012) On practical problems in estimation of antioxidant activity of compounds by DPPHmethod (Problems in estimation of antioxidant activity). Food Chem 131:1037–1043

    CAS  Google Scholar 

  • Dawidowicz AL, Olszowy M, Jóźwik-Dolęba M (2015a) Importance of solvent association in the estimation of antioxidant properties of phenolic compounds by DPPH method. J Food Sci Technol 52:4523–4529

    CAS  PubMed  Google Scholar 

  • Dawidowicz AL, Olszowy M, Jóźwik-Dolęba M (2015b) Antagonistic antioxidant effect in butylated hydroxytoluene/butylated hydroxyanisole mixture. J Food Process Preserv 39:2240–2248

    CAS  Google Scholar 

  • Decker EA (2002) Antioxidant mechanisms. In: Akoh CC, Min DB (eds) Food lipids, 2nd edn. Marcel Dekker Inc., New York, pp 517–542

    Google Scholar 

  • Enko J, Gliszczyńska-Świgło A (2015) Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: analysis with interaction indexes and isobolograms. Food Addit Contam Part A 32:1234–1242

    CAS  Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    CAS  PubMed  Google Scholar 

  • Freeman BL, Eggett DL, Parker TL (2010) Synergistic and antagonistic interactions of phenolic compounds found in navel oranges. J Food Sci 75:570–575

    Google Scholar 

  • Frum Y, Viljoen AM, Van Heerden FR (2007) Verbascoside and luteolin-5-O-β-D-glucoside isolated from Halleria lucida L. exhibit antagonistic anti-oxidant properties in vitro. S Afr J Bot 73:583–587

    CAS  Google Scholar 

  • Gessner PK (1995) Isobolographic analysis of interactions: an update on applications and utility. Toxicology 105:161–179

    CAS  PubMed  Google Scholar 

  • Grandois JL, Guffond D, Hamon E, Marchioni E, Werner D (2017) Combined microplate-ABTS and HPLC-ABTS analysis of tomato and pepper extracts reveals synergetic and antagonistic effects of their lipophilic antioxdative components. Food Chem 223:62–71

    PubMed  Google Scholar 

  • Grune T, Schringarpure R, Sitte N, Davies K (2001) Age-related changes in protein oxidation and proteolysis in mammalian cells. J Gerontol 56A:B459–B467

    CAS  Google Scholar 

  • Haila KM, Lievonen SM, Heinonen MI (1996) Effects of lutein, lycopene, annatto, and γ-tocopherol on autoxidation of triglycerides. J Agric Food Chem 44:2096–2100

    CAS  Google Scholar 

  • Hajimehdipoor H, Shahrestani R, Shekarchi M (2014) Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res J Pharmacogn 1:35–40

    CAS  Google Scholar 

  • Halliwell B, Aeschbach R, Lőliger I, Aruoma OI (1995) The characterization of antioxidants. Food Chem Toxicol 33:601–617

    CAS  PubMed  Google Scholar 

  • Heo HJ, Kim YJ, Chung D, Kim DO (2007) Antioxidant capacities of individual and combine phenolics in a model system. Food Chem 104:87–92

    CAS  Google Scholar 

  • Hidalgo M, Sánchez-Moreno C, Pascual-Teresa S (2010) Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chem 121:691–696

    CAS  Google Scholar 

  • Hu Ch, Kitts DD (2001) Evaluation of antioxidant activity of epigallocatechin gallate in biphasic model systems in vitro. Mol Cell Biochem 218:147–155

    CAS  PubMed  Google Scholar 

  • Iacopini P, Baldi M, Storchi P, Sebastiani L (2008) Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: content, in vitro antioxidant activity and interactions. J Food Compos Anal 21:589–598

    CAS  Google Scholar 

  • Jacob RA (1995) The integrated antioxidant system. Nutr Res 15:755–771

    CAS  Google Scholar 

  • Jacobs DR, Gross MD, Tapsell LC (2009) Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr 89:1543–1548

    Google Scholar 

  • Jia N, Zuo X, Guo Ch, Li Y, Cui J, Zhao Ch, Cao Sh, Wang Ch, Li R, Wu Y, Wen A (2017) Synergistic antinociceptive effects of alfenanil and propofol in the formalin test. Mol Med Rep 15:1893–1899

    CAS  PubMed  Google Scholar 

  • Liang J, Tian YX, Yang F, Zhang JP, Skibsted LH (2009) Antioxidant synergism between carotenoids in membranes. Astaxanthin as a radical transfer bridge. Food Chem 115:1437–1442

    CAS  Google Scholar 

  • Liang R, Chen CH, Han RM, Zhang JP, Skibsted LH (2010) Thermodynamic versus kinetic control of antioxidant synergism between β-carotene and (iso)flavonoids and their glycosides in liposomes. J Agric Food Chem 58:9221–9227

    CAS  PubMed  Google Scholar 

  • Liu Y, Liu S, Zhang H, Gu Y, Li X, He M, Tan H (2017) Application of the combination index (CI)-isobologram equation to research the toxicological interactions of clothianidin, thiamethoxam, and dinotefuran in honeybee, Apis mellifera. Chemosphere 184:806–811

    CAS  PubMed  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 8:118–126

    Google Scholar 

  • Marinova E, Toneva A, Yanishlieva N (2008) Synergistic antioxidant effect of α-tocopherol and myricetin on the autoxidation of triacylglycerols of sunflower oil. Food Chem 106:628–633

    CAS  Google Scholar 

  • Meyer AS, Heinonen M, Franklin EN (1998) Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin, and ellagic acid on human LDL oxidation. Food Chem 61:71–75

    CAS  Google Scholar 

  • Milos M, Makota D (2012) Investigation of antioxidant synergisms and antagonisms among thymol, carvacrol, thymoquinone and p-cymene in a model system using the Briggs–Rauscher oscillating reaction. Food Chem 131:296–299

    CAS  Google Scholar 

  • Muhammad DRA, Praseptiangga D, Van De Walle D, Dewettinck K (2017) Interaction between natural antioxidants derived from cinnamon and cocoa in binary and complex mixtures. Food Chem 231:356–364

    CAS  PubMed  Google Scholar 

  • Murakami M, Yamaguchi T, Takamura H, Matoba T (2003) Effects of ascorbic acid and α-tocopherol on antioxidant activity of polyphenolic compounds. J Food Sci 68:1622–1625

    CAS  Google Scholar 

  • Nieto G, Huvaere K, Skibsted LH (2011) Antioxidant activity of rosemary and thyme by-products and synergism with added antioxidant in a liposome system. Eur Food Res Technol 233:11–18

    CAS  Google Scholar 

  • Niki E, Noguchi N, Tschuhihashi H, Gotoh N (1995) Interaction among vitamin C, vitamin E, and β-carotene. Am J Clin Nutr 62:1322–1326

    Google Scholar 

  • Noguchi N, Niki E (2000) Phenolic antioxidants: a rationale for design and evolution of novel antioxidant drug for atherosclerosis. Free Radic Biol Med 28:1538–1546

    CAS  PubMed  Google Scholar 

  • Noguer M, Cerezo AB, Moỳa ML, Troncoso AM (2014) Synergism effect between phenolic metabolites and endogenous antioxidants in terms of antioxidant activity. Adv Chem Eng Sci 4:258–265

    Google Scholar 

  • Olszowy M (2019) What is responsible for antioxidant activities of polyphenolic compounds from plants. Plant Physiol Biochem 144:135–143

    CAS  PubMed  Google Scholar 

  • Olszowy M, Dawidowicz AL (2016) Essential oils as antioxidants: their evaluation by DPPH, ABTS, FRAP, CUPRAC and β-carotene bleaching methods. Monatshefte für Chemie Chemical Monthly 147:2083–2091

    CAS  Google Scholar 

  • Olszowy M, Dawidowicz AL, Jóźwik-Dolęba M (2019) Are mutual interactions between antioxidants the only factors responsible for antagonistic antioxidant effect of their mixtures? Additive and antagonistic antioxidant effects in mixtures of gallic, ferulic and caffeic acids. Eur Food Res Technol 245:1473–1485

    CAS  Google Scholar 

  • Omura K (1995) Antioxidant synergism between butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc 72:1565–1570

    CAS  Google Scholar 

  • Ooko E, Kadioglu O, Greten HJ, Efferth T (2017) Pharmacogenomic characterization and isobologram analysis of the combination of ascorbic acid and curcumin—two main metabolites of Curcuma longa—in cancer cells. Front Pharmacol 8:38

    PubMed  PubMed Central  Google Scholar 

  • Palafox-Carlos H, Gil-Chávez J, Sotelo-Mundo RR, Namieśnik J, Gorinstein S, González-Aquilar GA (2012) Antioxidant interactions between major phenolic compounds found in ‘Ataulfo’ mango pulp: chlorogenic, gallic, protocatechuic and vanillic acids. Molecules 17:12657–12664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parker TL, Miller SA, Myers LE, Miguez FE, Engeseth NJ (2010) Evaluation of synergistic antioxidant potential of complex mixtures using oxygen radical absorbance capacity (ORAC) and electron paramagnetic resonance (EPR). J Agric Food Chem 59:209–217

    Google Scholar 

  • Pedrielli P, Skibsted LH (2002) Antioxidant synergy and regeneration effect of quercetin, (−)-epicatechin, and (+)-catechin on α-tocopherol in homogeneous solutions of peroxidating methyl linoleate. J Agric Food Chem 50:7138–7144

    CAS  PubMed  Google Scholar 

  • Pekkarinen SS, Heinonem IM, Hopia AI (1999) Flavonoids quercetin, myricetin, kaemferol and (+)-catechin as antioxidants in methyl linoleate. J Sci Food Agric 79:499–506

    CAS  Google Scholar 

  • Pereira RB, Sousa C, Costa A, Andrade PB, Valentão P (2013) Glutathione and the antioxidant potential of binary mixtures with flavonoids: synergisms and antagonisms. Molecules 18:8858–8872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peyrat-Maillard MN, Cuvelier ME, Berset C (2003) Antioxidant activity of phenolic compounds in 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: synergistic and antagonistic effects. J Am Oil Chem Soc 80:1007–1012

    CAS  Google Scholar 

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, source, targets, and their implication in various diseases. Indian J Clin Biochem 30:11–26

    CAS  PubMed  Google Scholar 

  • Pignatelli P, Pulcinelli FM, Celestini A, Lenti L, Ghiseli A, Gazzaniga PP, Violi F (2000) The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am J Clin Nutr 72:1150–1155

    CAS  PubMed  Google Scholar 

  • Pinelo M, Manzocco L, Nuñez MJ, Nicoli MC (2004) Interaction among phenols in food fortification: negative synergism on antioxidant capacity. J Agric Food Chem 52(5):1177–1180

    CAS  PubMed  Google Scholar 

  • Polumbryk M, Ivanov S, Polumbryk O (2013) Antioxidants in food systems. Mechanism of action. Ukr J Food Sci 1(15):40

    Google Scholar 

  • Prieto MA, Curran TP, Gowen A, Vázquez-Álvarez JA (2015) An efficient methodology for quantification of synergy and antagonism in single electron transfer antioxidant assays. Food Res Int 67:284–298

    CAS  Google Scholar 

  • Ratz-Lyko A, Arct J, Pytkowska K (2012) Methods for evaluation of cosmetic antioxidant activity. Skin Res Technol 18:421–430

    PubMed  Google Scholar 

  • Reber JD, Eggett DL, Parker TL (2011) Antioxidant capacity interactions and a chemical/structural model of phenolic compounds found in strawberries. Int J Food Sci Nutr 62(5):445–452

    CAS  PubMed  Google Scholar 

  • Romano CS, Abadi K, Repetto V, Vojnov AA, Moreno S (2009) Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chem 115:456–461

    CAS  Google Scholar 

  • Rossetto M, Vanzani P, Mattivi F, Lunelli M, Scarpa M, Rigo A (2002) Synergistic antioxidant effect of catechin and malvidin 3-glucoside on free radicals-initiated peroxidation of linoleic acid in micelles. Arch Biochem Biophys 408:239–245

    CAS  PubMed  Google Scholar 

  • Rúa J, De Arriaga A, García-Armesto Busto F, Del Valle P (2017) Binary combinations of natural phenolic compounds with gallic acid or with its alkyl esters: an approach to understand the antioxidant interactions. Eur Food Res Technol 243:1211–1217

    Google Scholar 

  • Sadeghipour M, Terreux R, Phipps J (2005) Flavonoids and tyrosine nitration: structure-activity relationship correlation with enthalpy of formation. Toxicol In Vitro 19:155–165

    CAS  PubMed  Google Scholar 

  • Samra MA, Chedea VS, Economou A, Calokerinos A, Kefalas P (2011) Antioxidant/prooxidant properties of model phenolic compounds: part I. Studies on equimolar mixtures by chemiluminescence and cyclic voltammetry. Food Chem 125:622–629

    Google Scholar 

  • Santiesteban-Lopez A, Palou E, Lopez-Malo A (2007) Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected aw and pH. J Appl Microbiol 102:486–497

    CAS  PubMed  Google Scholar 

  • Sardarodiyan M, Sani AM (2016) Natural antioxidants: sources, extraction and application in food systems. Nutr Food Sci 46:363–373

    Google Scholar 

  • Sato K, Niki E, Shimasaki H (1990) Free radical-mediated chain oxidation of low density lipoprotein and its synergistic inhibition by vitamin E and vitamin C. Arch Biochem Biophys 279:402–405

    CAS  PubMed  Google Scholar 

  • Sazhina NN (2017) Determination of antioxidant activity of various bioantioxidants and their mixtures by the amperometric method. Russ J Bioorg Chem 43:771–775

    CAS  Google Scholar 

  • Sen S, Chakraborty R, Sridhar C, Reddy YSR, De B (2010) Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int J Pharm Sci Rev Res 3:91–100

    CAS  Google Scholar 

  • Sentkowska A, Pyrzyńska K (2018) Investigation of antioxidant interaction between Green tea polyphenols and acetaminophen using isobolographic analysis. J Pharm Biomed Anal 159:393–397

    CAS  PubMed  Google Scholar 

  • Sentkowska A, Pyrzyńska K (2019) Investigation of antioxidant activity of selenium compounds and their mixtures with tea polyphenols. Mol Biol Rep 46:3019–3024

    CAS  PubMed  Google Scholar 

  • Shi J, Qu Q, Kakuda Y, Xue SJ, Jiang Y, Koide S, Shim YY (2007) Investigation of the antioxidant and synergistic activity of lycopene and other natural antioxidants using LAME and AMVN model systems. J Food Compos Anal 20:603–608

    CAS  Google Scholar 

  • Siche R, Ávalos C, Arteaga H, Saldaña E, Vieira TMFS (2016) Antioxidant capacity of binary and ternary mixtures of orange, grape and starfruit juices. Curr Nutr Food Sci 12:65–71

    CAS  Google Scholar 

  • Skibsted LH (2012) Vitamin and non-vitamin antioxidants and their interaction in food. J Food Drug Anal 20:355–358

    CAS  Google Scholar 

  • Skroza D, Mekinić IG, Svilović S, Šimat V, Katalinić V (2015) Investigation of the potential synergistic effect of resveratrol with other phenolic compounds: a case of binary phenolic mixtures. J Food Compos Anal 38:13–18

    CAS  Google Scholar 

  • Sonam KS, Guleria S (2017) Synergistic antioxidant activity of natural products. Ann Pharm Pharm 2(16):1–6

    Google Scholar 

  • Swada JG, Keeley CJ, Ghane MA, Engeseth NJ (2016) Synergistic potential of papaya and strawberry nectar blends focusedon specific nutrients and antioxidants using alternative thermal and non-thermal processing techniques. Food Chem 199:87–95

    CAS  PubMed  Google Scholar 

  • Tallarida RJ (2006) An overview of drug combination analysis with isobolograms. J Pharm Exp Perspect 319:1–7

    CAS  Google Scholar 

  • Tavadyan LA, Minasyan SH (2019) Synergistic and antagonistic co-antioxidant effects of flavonoids with trolox or ascorbic acid in a binary mixture. J Chem Sci 131(40):1–9

    CAS  Google Scholar 

  • Thoo YY, Abas F, Lai OM, Ho CW, Yin J, Hedeegard RV, Skibsted LH, Tan CP (2013) Antioxidant synergism between ethanolic Centella asiatica extracts and α-tocopherol in model systems. Food Chem 138:1215–1219

    CAS  PubMed  Google Scholar 

  • Wang S, Zhu F (2017) Dietary antioxidant synergy in chemical and biological systems. Crit Rev Food Sci Nutr 57:2343–2357

    CAS  PubMed  Google Scholar 

  • Wang H, Martin MW, Yin S (2010) The synergistic effect of daidzein and α-tocopherol or ascorbic acid on microsome and LDL oxidation. Czech J Food Sci 28:385–391

    CAS  Google Scholar 

  • Wang S, Meckling KA, Marcone MF, Kakuda Y, Tsao R (2011) Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J Agric Food Chem 59:960–968

    CAS  PubMed  Google Scholar 

  • Wang S, Wang D, Liu Z (2015) Synergistic, additive and antagonistic effects of Potentilla fruticosa combined with EGb761 on antioxidant capacities and the possible mechanism. Ind Crops Prod 67:227–238

    CAS  Google Scholar 

  • Wei QY, Zhou B, Cai YJ, Yang L, Liu ZL (2006) Synergistic effect of green tea polyphenols with trolox on free radical-induced oxidative DNA damage. Food Chem 96:90–95

    CAS  Google Scholar 

  • Willcox JK, Ash SL, Catignani GL (2010) Antioxidant and prevention of chronic disease. Crit Rev Food Sci Nutr 44:275–295

    Google Scholar 

  • Woode E, Ameyaw EO, Abotsi WK, Boakye-Gyasi E (2015) An isobolographic analysis of the antinociceptive effect of xylopic acid in combination with morphine or diclofenac. J Basic Clin Pharm 6:103–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanai N, Shiotani S, Hagiwara S, Nabetani H, Nakijma M (2008) Antioxidant combination inhibits reactive oxygen species mediated damage. Biosci Biotechnol Biochem 72:3100–3106

    CAS  PubMed  Google Scholar 

  • Yeum KJ, Beretta G, Krinsky NI, Russell RM, Aldini G (2009) Synergistic interactions of antioxidant nutrients in a biological model system. Nutrition 25:839–846

    CAS  PubMed  Google Scholar 

  • Yin J, Becker EM, Andersen ML, Skibsted LH (2012) Green tea extract as food antioxidant. Synergism and antagonism with α-tocopherol in vegetable oils and their colloidal systems. Food Chem 135:2195–2202

    CAS  PubMed  Google Scholar 

  • Young IS, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Au JLS, Wientjes MG (2010) Comparison of methods for evaluating drug-drug interaction. Front Biosci 2:241–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Olszowy-Tomczyk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olszowy-Tomczyk, M. Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochem Rev 19, 63–103 (2020). https://doi.org/10.1007/s11101-019-09658-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-019-09658-4

Keywords

Navigation