Skip to main content

Advertisement

Log in

Fe2+ substitution in coexisting wadsleyite and clinopyroxene under hydrous conditions: implications for the 520-km discontinuity

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Chemical compositions and crystal structures of coexisting wadsleyite, clinopyroxene, and phase E (synthesized at 1400 °C and 18 GPa under hydrous conditions) have been analyzed by electron microprobe, single-crystal X-ray diffraction, and Raman spectroscopy. Single-crystal X-ray diffraction analyses indicate that Fe2+ substitution in the crystal structure significantly decreases the configurational entropies of wadsleyite and clinopyroxene in the middle transition zone under water-saturated conditions, providing a new thermodynamic constraint on the stability of ferromagnesian silicates near the wadsleyite–ringwoodite phase boundary (about 520 km). The variation in the depth of the 520-km discontinuity under hydrous conditions can be partly due to Fe2+ incorporation into wadsleyite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaogi M, Akimoto SI, Horioka K, Takahashi KI, Horiuchi H (1982) The system NiAl2O4-Ni2SiO4 at high-pressures and temperatures-spinelloids with spinel-related structures. J Solid State Chem 44:257–267

    Article  Google Scholar 

  • Angel RJ, Nestola F (2016) A century of mineral structures: how well do we know them? Am Miner 101:1036–1045

    Article  Google Scholar 

  • Angel RJ, Chopelas A, Ross NL (1992) Stability of high-density clinoenstatite at upper-mantle pressures. Nature 358:322–324

    Article  Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Burns RG, Sung C (1978) The effect of crystal field stabilization on the olivine-spinel transition in the system Mg2SiO4-Fe2SiO4. Phys Chem Miner 2:349–364

    Article  Google Scholar 

  • Cromer DT, Mann JB (1968) X-ray scattering factors computed from numerical Hartree-Fock wave functions. Acta Cryst 24:321–324

    Article  Google Scholar 

  • Deuss A, Woodhouse J (2001) Seismic observations of splitting of the mid-transition zone discontinuity in earth's mantle. Science 294:354–357

    Article  Google Scholar 

  • Finger LW, Hazen RM, Zhang JM, Ko JD, Navrotsky A (1993) The effect of Fe on the crystal structure of wadsleyite β-(Mg1-xFex)SiO4, 0.00 ≤x ≤ 0.40. Phys Chem Miner 19(6):361–368

    Article  Google Scholar 

  • Inoue T, Weidner DJ, Northrup PA, Parise JB (1998) Elastic properties of hydrous ringwoodite (γ-phase) on Mg2SiO4. Earth Planet Sci Lett 160:107–113

    Article  Google Scholar 

  • Jacobsen SD, Demouchy S, Frost DJ, Ballaran TB, Kung J (2005) A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: oxygen sites for hydrogen storage in earth's interior. Am Miner 90:61–70

    Article  Google Scholar 

  • Jahn S, Rahner R, Dachs E, Mrosko M, Koch-Müller M (2013) Thermodynamic properties of anhydrous and hydrous wadsleyite, β-Mg2SiO4. High Press Res 33:584–594

    Article  Google Scholar 

  • Kleppe AK, Jephcoat AP, Ross NL (2001) Raman spectroscopic studies of phase E to 19 GPa. Am Miner 86:1275–1281

    Article  Google Scholar 

  • Kudoh Y, Finger L, Hazen R, Prewitt C, Kanzaki M, Veblen D (1993) Phase E: a high pressure hydrous silicate with unique crystal chemistry. Phys Chem Miner 19:357–360

    Article  Google Scholar 

  • Mrosko M, Koch-Müller M, McCammon C, Rhede D, Smyth JR, Wirth R (2015) Water, iron, redox environment: effects on the wadsleyite–ringwoodite phase transition. Contrib Mineral Petr 170:9

    Article  Google Scholar 

  • Nordstrom DK, Munoz JL (1986) Geochemical thermodynamics. Blackwell Scientific Publication, USA, p 477

    Google Scholar 

  • Rigden SM, Gwanmesia GD, Fitz Gerald JD, Jackson I, Liebermann RC (1991) Spinel elasticity and seismic structure of the transition zone of the mantle. Nature 354:143–145

    Article  Google Scholar 

  • Ringwood AE (1967) Pyroxene-garnet transformation in earth’s Mantle. Earth Planet Sci Lett 2(3):255–263

    Article  Google Scholar 

  • Ringwood AE, Major A (1970) The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Phys Earth Planet Int 3:89–108

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Rubie DC (1999) Characterising the sample environment in multianvil high-pressure experiments. Phase Transit 68:431–451

    Article  Google Scholar 

  • Saikia A, Frost DJ, Rubie DC (2008) Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science 319:1515–1518

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Sheldrick GM (2018) SHELXL: programs for crystal structure analysis. University of Göttingen, Germany

    Google Scholar 

  • Smyth JR (1969) Orthopyroxene-high-low clinopyroxene inversions. Earth Planet Sci Lett 6:406–407

    Article  Google Scholar 

  • Smyth JR (1987) β-Mg2SiO4: a potential host for water in the mantle. Am Miner 72:1051–1055

    Google Scholar 

  • Smyth JR, Kawamoto T, Jacobsen SD, Swope RJ, Hervig RL, Holloway JR (1997) Crystal structure of monoclinic hydrous wadsleyite [β-(Mg, Fe)2SiO4]. Am Miner 82:270–275

    Article  Google Scholar 

  • Smyth JR, Holl CM, Frost DJ, Jacobsen SD (2004) High pressure crystal chemistry of hydrous ringwoodite and water in the earth's interior. Phys Earth Planet Inter 143:271–278

    Article  Google Scholar 

  • Smyth JR, Bolfan-Casanova N, Avignant D, El-Ghozzi M, Hirner SM (2014) Tetrahedral ferric iron in oxidized hydrous wadsleyite. Am Miner 99:458–466

    Article  Google Scholar 

  • Takahashi E (1986) Melting of a dry peridotite Klb-1 up to 14 GPa—implications on the origin of peridotitic upper mantle. J Geophys Res-Solid 91:9367–9382

    Article  Google Scholar 

  • Tokonami M (1965) Atomic scattering factor for O2-. Acta Crystallogr 19:486–486

    Article  Google Scholar 

  • van der Meijde M, van der Lee S, Giardini D (2005) Seismic discontinuities in the Mediterranean mantle. Phys Earth Planet Inter 148:233–250

    Article  Google Scholar 

  • Woodland AB, Angel RJ (1997) Reversal of the orthoferrosilite-high-P clinoferrosilite transition, a phase diagram for FeSiO3 and implications for the mineralogy of the earth's upper mantle. Eur J Miner 9:245–254

    Article  Google Scholar 

  • Woodland AB, McCammon C, Angel RJ (1997) Intersite partitioning of Mg and Fe in Ca-free high-pressure C2/c clinopyroxene. Am Miner 82:923–930

    Article  Google Scholar 

  • Ye Y, Schwering RA, Smyth JR (2009) Effects of hydration on thermal expansion of forsterite, wadsleyite, and ringwoodite at ambient pressure. Am Miner 94:899–904

    Article  Google Scholar 

  • Yusa H, Inoue T, Ohishi Y (2000) Isothermal compressibility of hydrous ringwoodite and its relation to the mantle discontinuities. Geophys Res Lett 27:413–416

    Article  Google Scholar 

  • Zhang L, Smyth JR, Allaz J, Kawazoe T, Jacobsen SD, Jin ZM (2016) Transition metals in the transition zone: crystal chemistry of minor element substitution in wadsleyite. Am Miner 101:2322–2330

    Article  Google Scholar 

  • Zhang L, Smyth JR, Kawazoe T, Jacobsen SD, Qin S (2018) Transition metals in the transition zone: partitioning of Ni Co, and Zn between olivine, wadsleyite, ringwoodite, and clinoenstatite. Contrib Miner Pet 173:52

    Article  Google Scholar 

  • Zhang L, Smyth JR, Kawazoe T, Jacobsen SD, Niu J, He X, Qin S (2019) Stability, composition, and crystal structure of Fe-bearing phase E in the transition zone. Am Miner 104:1620–1624

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 41802035) and U.S. National Science Foundation (EAR 14-16979 to J.R.S.) and China Postdoctoral Science Foundation (No. 2017M620508). Multi-anvil experiments were supported by Bayerisches Geoinstitut Visitors Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Smyth, J.R. Fe2+ substitution in coexisting wadsleyite and clinopyroxene under hydrous conditions: implications for the 520-km discontinuity. Phys Chem Minerals 47, 2 (2020). https://doi.org/10.1007/s00269-019-01072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-019-01072-8

Keywords

Navigation