Skip to main content
Log in

Halamishite, Ni5P4, a new terrestrial phosphide in the Ni–P system

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Halamishite, Ni5P4, is a new natural phosphide discovered in pyrometamorphic assemblages of the Hatrurim Formation (Mottled Zone), Southern Levant. The mineral occurs as minute grains up to 20 μm in size intimately intergrown with zuktamrurite, FeP2, and transjordanite, (Ni,Fe)2P, which are disseminated in fine-grained diopside microbreccia. Chemical composition of the holotype material (electron microprobe, wt%): Ni 69.23, Fe 1.80, P 29.59, total 100.62, was recalculated to (Ni4.90Fe0.13)5.03P3.97 on the basis of nine atoms per formula unit. The ideal formula of halamishite is Ni5P4. In reflected light, the mineral is white with beige tint, non-pleochroic. It is moderately anisotropic and bireflectant (ΔR589 = 7.2%). Reflectance values for the four wavelengths recommended by the IMA Commission on Ore Microscopy are [Rmax/Rmin (%), λ (nm)]: 44.3/36.6, 470; 49.2/42.1, 546; 51.3/44.1, 589; 53.3/46.1, 650. Crystal structure of halamishite was solved and refined to R1 = 0.031 based on 425 unique observed [I ≥ 2σ(I)] reflections. The mineral is hexagonal, space group P63mc, a 6.8184(4), c 11.0288(8) Å, V 444.04(6) Å3, Z = 4. Dx calculated for an empirical formula is 6.249(1) g cm−3. Halamishite is named for its type locality, the Halamish wadi in the Hatrurim basin, Negev Desert, Israel. It is a naturally occurring analogue of synthetic Ni5P4, the compound widely used in electro- and photocatalytic applications. Due to chemical proximity to the Ni5P4 end-member, halamishite can be used as a geothermometer indicating that formation of phosphide assemblages had occurred at a temperature below 870 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aso K, Hayashi A, Tatsumisago M (2011) Phase-selective synthesis of nickel phosphide in high-boiling solvent for all-solid-state lithium secondary batteries. Inorg Chem 50:10820–10824

    Google Scholar 

  • Babizhetskyy V, Kotur B, Oryshchyn S, Zheng C, Kneidinger F, Leber L, Simson C, Bauer E, Michor H (2013) Crystal and electronic structure and physical properties of Ni5P4. Solid State Commun 164:1–5

    Google Scholar 

  • Britvin SN, Kolomensky VD, Boldyreva MM, Bogdanova AN, Kretser YuL, Boldyreva ON, Rudashevsky NS (1999) Nickelphosphide (Ni, Fe)3P—the nickel analog of schreibersite. Zapiski VMO 128:64–72 (Russian)

    Google Scholar 

  • Britvin SN, Murasko MN, Ye V, Polekhovsky YuS, Krivovichev SV (2015) Earth’s phosphides in Levant and insights into the source of Archaean prebiotic phosphorus. Sci Rep 5:8355

    Google Scholar 

  • Britvin SN, Murashko MN, Vapnik E, Polekhovsky YuS, Krivovichev SV (2017) Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geol Ore Deposit 59:619–625

    Google Scholar 

  • Britvin SN, Murashko MN, Ye V, Polekhovsky YuS, Krivovichev SV, Vereshchagin OS, Vlasenko NS, Shilovskikh VV, Zaitsev AN (2019a) Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Phys Chem Miner 46:361–369

    Google Scholar 

  • Britvin SN, Ye V, Polekhovsky YuS, Krivovichev SV, Krzhizhanovkaya MG, Gorelova LA, Vereshchagin OS, Shilovskikh VV, Zaitsev AN (2019b) Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, Southern Levant. Mineral Pet 113:237–248

    Google Scholar 

  • Britvin SN, Shilovskikh VV, Pagano R, Vlasenko NS, Zaitsev AN, Krzhizhanovskaya MG, Lozhkin MS, Zolotarev AA, Gurzhiy VV (2019c) Allabogdanite, the high-pressure polymorph of (Fe, Ni)2P, a stishovite-grade indicator of impact processes in the Fe–Ni–P system. Sci Rep 9:1047

    Google Scholar 

  • Britvin SN, Murashko MN, Vapnik Ye, Polekhovsky YuS, Krivovichev SV, Vereshchagin OS, Shilovskikh VV, Krzhizhanovskaya MG (2020a) Negevite, the pyrite-type NiP2, a new terrestrial phosphide. Am Mineral. https://doi.org/10.2138/am-2020-7192

    Article  Google Scholar 

  • Britvin SN, Murashko MN, Vapnik Ye, Polekhovsky YuS, Krivovichev SV, Krzhizhanovskaya MG, Vereshchagin OS, Shilovskikh VV, Vlasenko NS (2020b) Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite-transjordanite (hexagonal Fe2P–Ni2P). Am Mineral. https://doi.org/10.2138/am-2020-7275

    Google Scholar 

  • Buchwald VF (1975) Handbook of Iron meteorites. University of California Press, California

    Google Scholar 

  • Burg A, Ye K, Lyakhovsky V (1999) Hatrurim-2000: The “Mottled Zone” revisited, forty years later. Isr J Earth Sci 48:209–223

    Google Scholar 

  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341

    Google Scholar 

  • Dowty E (2011) ATOMS, version 6.4, Shape Software, Kingsport, Tennessee

  • Drábek M (2006) Phosphide solid-solutions within the metal-rich portion of the quaternary system Co–Fe–Ni–P at 800 °C, and mineralogical implications. Can Mineral 44:399–408

    Google Scholar 

  • Elfström M (1965) Crystal structure of Ni5P4. Acta Chem Scand 19:1694–1704

    Google Scholar 

  • Fleurance S, Cuney M, Malartre F, Reyx J (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the late Cretaceous—early Tertiary Belqa group, central Jordan. Palaeogeogr Palaeoclimatol 369:201–219

    Google Scholar 

  • Geller YI, Burg A, Halicz L, Kolodny Y (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chem Geol 334:25–36

    Google Scholar 

  • Gross H (1977) The mineralogy of the Hatrurim Formation, Israel. Bull Geol Surv Israel 70:1–80

    Google Scholar 

  • Horsman GP, Zechel DL (2016) Phosphonate Biochemistry. Chem Rev 117:5704–5783

    Google Scholar 

  • Kitadai N, Maruyama S (2018) Origins of building blocks of life: a review. Geosci Front 9:1117–1153

    Google Scholar 

  • Kolodny Y, Burg A, Geller YI, Halicz L, Zakon Y (2014) Veins in the combusted metamorphic rocks, Israel; weathering or a retrograde event? Chem Geol 385:140–155

    Google Scholar 

  • La Cruz NL, Qasim D, Abbott-Lyon H, Pirim C, McKee AD, Orlando T, Gull M, Lindsay D, Pasek MA (2016) The evolution of the surface of the mineral schreibersite in prebiotic chemistry. Phys Chem Chem Phys 18:20160–20167

    Google Scholar 

  • Laursen AB, Patraju KR, Whitaker MJ, Retuerto M, Sarkar T, Yao N, Ramanujachary KV, Greenblatt M, Dismukes GC (2015) Nanocrystalline Ni5P4: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energ Environ Sci 8:1027–1034

    Google Scholar 

  • Ledendecker M, Krick Calderon S, Papp C, Steinrueck H-P, Antonietti M, Shalom M (2015) The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew Chem Int Ed 54:12361–12365

    Google Scholar 

  • Ledendecker M, Mondschein JS, Kasian O, Geiger S, Goehl D, Schalenbach M, Zeradjanin A, Cherevko S, Schaak RE, Mayrhofer K (2017) Stability and activity of non-noble-metal-based catalysts toward the hydrogen evolution reaction. Angew Chem Int Ed 56:9767–9771

    Google Scholar 

  • Li H, Lu S, Sun J, Pei J, Liu D, Xue Y, Mao J, Zhu W, Zhuang Z (2018) Phase-controlled synthesis of nickel phosphide nanocrystals and their electrocatalytic performance for the hydrogen evolution reaction. Chem Eur J 24:1748–11754

    Google Scholar 

  • Lutz HD, Schneider G, Kliche G (1983) Chalcides and pnictides of Group VIII transition metals: far-infrared spectroscopic studies on compounds MX2, MXY, and MY2 with pyrite, marcasite, and arsenopyrite structure. Phys Chem Miner 9:109–114

    Google Scholar 

  • Makovicky E (2006) Crystal structures of sulfides and other chalcogenides. Rev Mineral Geochem 61:7–125

    Google Scholar 

  • Mittlefehldt (1998) Non-chondritic meteorites from asteroidal bodies. In: Papike JJ (ed) Planetary materials, reviews in mineralogy, 36th edn. Mineralogical Society of America, Washington, pp 4-1–4-195

    Google Scholar 

  • Murashko MN, Vapnik Y, Polekhovsky YP, Shilovskikh VV, Zaitsev AN, Vereshchagin OS, Britvin SN (2019) Nickolayite, IMA 2018-126. CNMNC Newsletter No. 47. Mineral Mag 83:143–147

    Google Scholar 

  • Novikov I, Vapnik Y, Safonova I (2013) Mud volcano origin of the Mottled Zone, South Levant. Geosci Front 4:597–619

    Google Scholar 

  • Pan Y, Liu Y, Zhao J, Yang K, Liang J, Liu D, Hu W, Liu D, Liu Y, Liu C (2015) Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J Mater Chem A 3:1656–1665

    Google Scholar 

  • Pasek MA (2015) Phosphorus as a lunar volatile. Icarus 255:18–23

    Google Scholar 

  • Pasek MA (2017) Schreibersite on the early Earth: scenarios for prebiotic phosphorylation. Geosci Front 8:329–335

    Google Scholar 

  • Pasek M, Block K (2009) Lightning-induced reduction of phosphorus oxidation state. Nat Geosci 2:553–556

    Google Scholar 

  • Pasek MA, Gull M, Herschy B (2017) Phosphorylation on the early earth. Chem Geol 475:149–170

    Google Scholar 

  • Pratesi G, Bindi L, Moggi-Cecci V (2006) Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the northwest Africa 1054 acapulcoite. Am Mineral 91:451–454

    Google Scholar 

  • Scheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8

    Google Scholar 

  • Schmetterer C, Vizdal J, Ipser H (2009) A new investigation of the system Ni–P. Intermetallics 17:826–834

    Google Scholar 

  • Sharygin VV, Vapnik Y, Sokol EV, Kamenetsky VS, Shagam R (2006) Melt inclusions in minerals of schorlomite-rich veins of the Hatrurim Basin, Israel: composition and homogenization temperatures ACROFII program with abstracts. Nanjing University PH, Nanjing, pp 189–192

    Google Scholar 

  • Skála R, Císařová I (2005) Crystal structure of meteoritic schreibersites: determination of absolute structure. Phys Chem Miner 31:721–732

    Google Scholar 

  • Sokol EV, Novikov IS, Ye V, Sharygin VV (2007) Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Dokl Earth Sci 413A:474–480

    Google Scholar 

  • Wang D, Kong L-B, Liu M-C, Luo Y-C, Kang L (2015a) An approach to preparing Ni–P with different phases for use as supercapacitor electrode materials. Chem Eur J 21:17897–17903

    Google Scholar 

  • Wang X, Kolen'ko YV, Bao X-Q, Kovnir K, Liu L (2015b) One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew Chem Int Ed 54:8188–8192

    Google Scholar 

  • Wexler RB, Martirez JMP, Rappe AM (2016) Stable phosphorus-enriched (0001) surfaces of nickel phosphides. Chem Mater 28(15):5365–5372

    Google Scholar 

  • Wexler RB, Martirez JMP, Rappe AM (2017) Active role of phosphorus in the hydrogen evolving activity of nickel phosphide (0001) surfaces. ACS Catal 7:7718–7725

    Google Scholar 

  • Vapnik Y, Sharygin V, Sokol E, Shagam R (2007) Paralavas in a combustion metamorphic complex, Hatrurim Basin, Israel. GSA Rev Eng Geol XVIII:133–153

    Google Scholar 

  • Zelinska M, Oryshchyn S, Zhak O, Pivan J-Y, Potel M, Noel H (2007) Redetermination of Ni5P4. Acta Crystallogr E63:i158–i159

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Russian Science Foundation (Grant 18-17-00079). The authors gratefully acknowledge two anonymous referees for the helpful comments and recommendations. The authors thank X-ray Diffraction Centre, “Geomodel” Resource Centre and Nanophotonics Resource Centre of Saint Petersburg State University for providing instrumental and computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey N. Britvin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yury S. Polekhovsky: deceased August 29, 2018.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britvin, S.N., Murashko, M.N., Vapnik, Y. et al. Halamishite, Ni5P4, a new terrestrial phosphide in the Ni–P system. Phys Chem Minerals 47, 3 (2020). https://doi.org/10.1007/s00269-019-01073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-019-01073-7

Keywords

Navigation