Skip to main content

Advertisement

Log in

Investigations on the compatibilization between poly(lactic-co-glycolic acid)/poly(trimethylene carbonate) blends and poly(lactide-co-trimethylene carbonate)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, the effect of different contents of poly(lactide-co-trimethylene carbonate) (PLT) as a compatibilizer on the blends of PLGA and PTMC has been investigated. The PLGA/PTMC/PLT ternary composites were prepared by using the solution co-precipitation method. The PLT component played a very important role in determining internal structure, and thermal, mechanical, and hydrophilic properties of whole composites. Our results showed that the PLT addition made the glass transition temperature of PLGA and PTMC close to that of each other and improved their compatibility. When the amount of PLT addition was 3 wt%, the two-phase interface of the composite fracture surface almost disappeared, which further demonstrated that PLT could improve the interfacial compatibility of PLGA and PTMC. The tensile strength and tensile modulus and the elongation of the PLGA/PTMC/PLT composites were 54.01 ± 2.1 MPa, 1.11 ± 0.05 GPa, 49.29 ± 3.6% respectively after the 3 wt% random copolymers was added. The results of XRD and POM showed that the crystalline morphology of the composites was spherocrystal, where the second crystalline phase was not found. Interestingly, PLT reduced the hydrophilicity of PLGA/PTMC/PLT composites. In conclusion, PLGA/PTMC/PLT composites are expected to have a fascinating role in the field of bone defect repair.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pappalardo D, Mathisen T, Finne-Wistrand A (2019) Biocompatibility of resorbable polymers: a historical perspective and framework for the future. Biomacromolecules 20:1465–1477

    Article  CAS  Google Scholar 

  2. Castillo-Dali G, Velazquez-Cayon R, Angeles Serrera-Figallo M, Rodriguez-Gonzalez-Elipe A, Gutierrez-Perez J-L, Torres-Lagares D (2015) Importance of poly(lactic-co-glycolic acid) in scaffolds for guided bone regeneration: a focused review. J Oral Implantol 41:E152–E157

    Article  Google Scholar 

  3. Salonius E, Muhonen V, Lehto K, Jarvinen E, Pyhalto T et al (2019) Gas-foamed poly(lactide-co-glycolide) and poly(lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects. J Tissue Eng Regen Med 13:406–415

    Article  CAS  Google Scholar 

  4. Jeong SI, Kim SY, Cho SK, Chong MS (2007) Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 28:1115–1122

    Article  CAS  Google Scholar 

  5. Liu Q, Jiang L, Shi R, Zhang L (2012) Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—a review. Prog Polym Sci 37:715–765

    Article  CAS  Google Scholar 

  6. Yousefi AM, James PF, Akbarzadeh R, Subramanian A et al (2016) Prospect of stem cells in bone tissue engineering: a review. Stem Cells Int. https://doi.org/10.1155/2016/6180487

    Article  Google Scholar 

  7. Martina M, Hutmacher DW (2007) Biodegradable polymers applied in tissue engineering research: a review. Polym Int 56:145–157

    Article  CAS  Google Scholar 

  8. Fukushima K (2016) Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater Sci 4:9–24

    Article  CAS  Google Scholar 

  9. Vilay V, Mariatti M, Ahmad Z, Pasomsouk K, Todo M (2009) Characterization of the mechanical and thermal properties and morphological behavior of biodegradable poly(L-lactide)/poly(ε-caprolactone) and poly(L-lactide)/poly(butylene succinate-co-L-lactate) polymeric blends. J Appl Polym Sci 114:1784–1792

    Article  CAS  Google Scholar 

  10. Zhu Y, Wang Z, Li L et al (2017) In vitro degradation behavior of a hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. J Mater Chem B 5:8695–8706

    Article  CAS  Google Scholar 

  11. Chou SF, Woodrow KA (2017) Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J Mech Behav Biomed Mater 65:724–733

    Article  CAS  Google Scholar 

  12. Han Y, Jin X, Yang J et al (2012) Totally bioresorbable composites prepared from poly(l-lactide)-co-(trimethylene carbonate) copolymers and poly(l-lactide)-co-(glycolide) fibers as cardiovascular stent material. Polym Eng Sci 52:741–750

    Article  CAS  Google Scholar 

  13. Zhang F, Song Q, Huang X, Li F, Wang K, Tang Y, Hou C, Shen H (2016) A novel high mechanical property PLGA composite matrix loaded with nanodiamond-phospholipid compound for bone tissue engineering. ACS Appl Mater Interfaces 8:1087–1097

    Article  CAS  Google Scholar 

  14. Fernandes KR, Magri AMP, Kido HW et al (2017) Biosilicate/PLGA osteogenic effects modulated by laser therapy: in vitro and in vivo studies. J Photochem Photobiol B Biol 173:258–265

    Article  CAS  Google Scholar 

  15. Li X, Zhang S, Zhang X et al (2017) Biocompatibility and physicochemical characteristics of poly(epsilon-caprolactone)/poly(lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater Des 114:149–160

    Article  CAS  Google Scholar 

  16. Guo J, Ning C, Liu X (2018) Bioactive calcium phosphate silicate ceramic surface-modified PLGA for tendon-to-bone healing. Colloids Surf B Biointerfaces 164:388–395

    Article  CAS  Google Scholar 

  17. Liang X, Duan P, Gao J et al (2018) Bilayered PLGA/PLGA-HAp composite scaffold for osteochondral tissue engineering and tissue regeneration. Acs Biomater Sci Eng 4:3506–3521

    Article  CAS  Google Scholar 

  18. Jiang L, Ma B, Li Y, Ding H, Su S, Xiong C (2019) Effect of bamboo fiber on the degradation behavior and in vitro cytocompatibility of the nano-hydroxyapatite/poly(lactide-co-glycolide) (n-HA/PLGA) composite. Cellulose 26:1099–1110

    Article  CAS  Google Scholar 

  19. Wu LB, Ding JD (2014) In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25:5821–5830

    Article  Google Scholar 

  20. Luo YR, Zhang L, Chen C et al (2018) The delayed degradation mechanism and mechanical properties of beta-TCP filler in poly(lactide-co-glycolide)/beta-tricalcium phosphate composite suture anchors during short-time degradation in vivo. J Mater Res 33:4278–4286

    Article  CAS  Google Scholar 

  21. van Leeuwen AC, Huddleston Slater JJR, Gielkens PFM, de Jong JR, Grijpma DW, Bos RR (2012) Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes. Acta Biomater 8:1422–1429

    Article  Google Scholar 

  22. Zhang Z, Zou S, Vancso GJ, Grijpma DW, Feijen J (2005) Enzymatic surface erosion of poly(trimethylene carbonate) films studied by atomic force microscopy. Biomacromolecules 6:3404–3409

    Article  CAS  Google Scholar 

  23. Guillaume O, Geven MA, Sprecher CM et al (2017) Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater 54:386–398

    Article  CAS  Google Scholar 

  24. Zhang X, Geven MA, Wang X et al (2018) A drug eluting poly(trimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules. Int J Nanomedicine 13:5701–5718

    Article  CAS  Google Scholar 

  25. Hiroharu A, Yoshikazu T et al (2014) Surface control of hydrophilicity and degradability with block copolymers composed of lactide and cyclic carbonate bearing methoxyethoxyl groups. Polymer 55:3591–3598

    Article  Google Scholar 

  26. Nalinthip C, Hiroharu A (2018) Preparation of thermosensitive biodegradable hydrogel using poly(5-[2-{2-(2-methoxyethoxy)ethyoxy}-ethoxyme thyl]-5-methyl-1,3-dioxa-2-one) derivatives. Materialia 5:100178

    Google Scholar 

  27. Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q (2013) Toughening of poly(L-lactide) with poly(epsilon-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer 54:5257–5266

    Article  CAS  Google Scholar 

  28. Moon HK, Choi YS, Lee JK, Ha CS, Lee WK, Gardella JA Jr (2009) Miscibility and hydrolytic behavior of poly(trimethylene carbonate) and poly(L-lactide) and their blends in monolayers at the air/water interface. Langmuir 25:4478–4483

    Article  CAS  Google Scholar 

  29. Xie XL, Bai W, Wu H et al (2015) Increasing the compatibility of poly(l-lactide)/poly(para-dioxanone) blends through the addition of poly(para-dioxanone-co-l-lactide). J Appl Polym Sci. https://doi.org/10.1002/app.41323

    Google Scholar 

  30. Todo M, Park SD, Takayama T, Arakawa K (2007) Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Eng Fract Mech 74:1872–1883

    Article  Google Scholar 

  31. Lin W, Qu JP (2019) Enhancing impact toughness of renewable poly(lactic acid)/thermoplastic polyurethane blends via constructing cocontinuous-like phase morphology assisted by ethylene-methyl acrylate-glycidyl methacrylate copolymer. Ind Eng Chem Res 58:10894–10907

    Article  CAS  Google Scholar 

  32. Rathi SR, Coughlin EB, Hsu SL et al (2012) Effect of midblock on the morphology and properties of blends of ABA triblock copolymers of PDLA-mid-block-PDLA with PLLA. Polymer 53:3008–3016

    Article  CAS  Google Scholar 

  33. Oyama HT (2009) Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polymer 50:747–751

    Article  CAS  Google Scholar 

  34. Phetwarotai W, Phusunti N, Aht-Ong D (2019) Preparation and characteristics of poly(butylene adipate-co-terephthalate)/polylactide blend films via synergistic efficiency of plasticization and compatibilization. Chin J Polym Sci 37:68–78

    Article  CAS  Google Scholar 

  35. Kang H, Qiao B, Wang R et al (2013) Employing a novel bioelastomer to toughen polylactide. Polymer 54:2450–2458

    Article  CAS  Google Scholar 

  36. Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:3091–3101

    Article  CAS  Google Scholar 

  37. Huang S, Sun H, Sun J et al (2014) Biodegradable tough blends of poly(L-lactide) and poly(castor oil)-poly(L-lactide) copolymer. Mater Lett 133:87–90

    Article  CAS  Google Scholar 

  38. Jia Z, Zhang K, Tan J et al (2009) Crystallization behavior and mechanical properties of crosslinked plasticized poly(L-lactic acid). J Appl Polym Sci 111:1530–1539

    Article  CAS  Google Scholar 

  39. Na YH, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Compatibilization effect of poly(epsilon-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(epsilon-caprolactone) blends. Biomacromolecules 3:1179–1186

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Science and Technology supporting program of Sichuan province, China (No.

2014SZ0128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengdong Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Feng, S., Zhang, Y. et al. Investigations on the compatibilization between poly(lactic-co-glycolic acid)/poly(trimethylene carbonate) blends and poly(lactide-co-trimethylene carbonate). Colloid Polym Sci 298, 169–178 (2020). https://doi.org/10.1007/s00396-019-04595-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04595-2

Keywords

Navigation