Skip to main content
Log in

Molybdovanadophosphoric Heteropolyacid-Catalyzed Aerobic Oxidation of Methacrolein: The Crucial Role of Ionic Liquid as a Modifier

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

[EMIM]PAV[X] (X = Ac, NO3, BF4) was synthesized by a facile method using imidazolium-based ionic liquids ([EMIM][X], X = Ac, NO3, BF4) as the modifying reagent. Characterization by FT-IR, XRD, SEM, TG/DTA, H2-TPR and XPS demonstrated that [EMIM]PAV[Ac] has uniform rod-like morphology, better redox property and higher amount of NH4+ composite, which therefore provides a high selectivity of 98% in the oxidative transformation of methacrolein (MAL) to methacrylic acid (MAA) as a catalyst. Theoretical calculations suggested the relatively strong H-bond basicity of C2−H in [EMIM][Ac] has a great positive influence on the structure and redox property of [EMIM]PAV[X] hybrids.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Deuβer LM, Gaube JW et al (1996) Effects of Cs and V on heteropolyacid catalysts in methacrolein oxidation. Stud Surf Sci Catal 101:981–990

    Google Scholar 

  2. Cao YL, Wang L, Zhou LL et al (2017) Cs(NH4)xH3–xPMo11VO40 catalyzed selective oxidation of methacrolein to methacrylic acid: effects of NH4+ on the structure and catalytic activity. Ind Eng Chem Res 56:653–664

    CAS  Google Scholar 

  3. Zhang H, Yan R, Li Y, Diao Y et al (2013) Investigation of Cu- and Fe-doped CsH3PMo11VO40 heteropoly compounds for the selective oxidation of methacrolein to methacrylic acid. Ind Eng Chem Res 52:4484–4490

    CAS  Google Scholar 

  4. Zhou L, Wang L, Zhang S et al (2015) Effect of vanadyl species in Keggin-type heteropoly catalysts in selective oxidation of methacrolein to methacrylic acid. J Catal 329:431–440

    CAS  Google Scholar 

  5. Kanno M, Miura YK, Yasukawa T et al (2011) 11-Molybdo-1-vanadophosphoricacid H4PMo11VO40 supported on ammonia-modified silica as highly active and selective catalyst for oxidation of methacrolein. Catal Commun 13:59–62

    CAS  Google Scholar 

  6. Laronze N, Marchal-Roch C, Guillou N et al (2003) Solid-state chemistry of ammonium and cesium 1-vanado-11-molybdophosphate and ammonium 12-molybdosilicate: application to oxidation catalysis. J Catal 220:172–181

    CAS  Google Scholar 

  7. Marosi L, Oteroareán C (2003) Catalytic performance of Csx (NH4)yHz PMo12O40 and related heteropolyacids in the methacrolein to methacrylic acid conversion: in situ structural study of the formation and stability of the catalytically active species. J Catal 213:235–240

    CAS  Google Scholar 

  8. Kim H, Ji CJ, Dong RP et al (2007) Preparation of H5PMo10V2O40 (PMo10V2) catalyst immobilized on nitrogen-containing mesoporous carbon (N-MC) and its application to the methacrolein oxidation. Appl Catal A 320:159–165

    CAS  Google Scholar 

  9. Kanno M, Yasukawa T, Ninomiya W et al (2010) Catalytic oxidation of methacrolein to methacrylic acid over silica-supported 11-molybdo-1-vanadophosphoric acid with different heteropolyacid loadings. J Catal 273:1–8

    CAS  Google Scholar 

  10. Kim JD, Honma I (2005) Highly proton conducting hybrid materials synthesized from 12-phosphotungstic and hexadecyltrimethylammonium salt. Solid State Ionics 176:547–552

    CAS  Google Scholar 

  11. Silviani E, Burns RC (2004) Synthesis and characterization of soluble alkali metal, alkaline earth metal and related Keggin-type [PMo12O40]3− salts for heterogeneous catalysis reactions. J Mol Catal A 219:327–342

    CAS  Google Scholar 

  12. Jing F, Katryniok B, Dumeignil F et al (2014) Catalytic selective oxidation of isobutane to methacrylic acid on supported (NH4)3HPMo11VO40 catalysts. J Catal 309:121–135

    CAS  Google Scholar 

  13. Ballarini N, Candiracci F, Cavani F et al (2007) The dispersion of Keggin-type P/Mo polyoxometalates inside silica gel, and the preparation of catalysts for the oxidation of isobutane to methacrolein and methacrylic acid. Appl Catal A 325:263–269

    CAS  Google Scholar 

  14. Ito T, Kei Inumaru A, Misono M et al (2001) Epitaxially self-assembled aggregates of polyoxotungstate nanocrystallites, (NH4)3PW12O40: synthesis by homogeneous precipitation using decomposition of urea. Chem Mater 32:824–831

    Google Scholar 

  15. Méndez FJ, Llanos A, Echeverría M et al (2013) Mesoporous catalysts based on Keggin-type heteropolyacids supported on MCM-41 and their application in thiophene hydrodesulfurization. Fuel 110:249–258

    Google Scholar 

  16. Inumaru K, Ono A, Kubo H et al (1998) Catalysis by heteropoly compounds Part 39 The structure and redox behaviour of vanadium species in molybdovanadophosphoric acid catalysts during partial oxidation of isobutane. J Chem Soc Faraday Trans 94:1765–1770

    CAS  Google Scholar 

  17. Ghanbari-Siahkali A, Philippou A, Dwyer J et al (2000) The acidity and catalytic activity of heteropoly acid on MCM-41 investigated by MAS NMR, FTIR and catalytic tests. Appl Catal A 192:57–69

    CAS  Google Scholar 

  18. Yan J, Zhao X, Huang J et al (2014) Synthesis and characterization of two polyoxometalates consisting of different Cu-ligand hydrogen phosphate units. J Solid State Chem 211:200–205

    CAS  Google Scholar 

  19. Li Z, Qian Z, Liu H, Ping H et al (2006) Organic–inorganic composites based on room temperature ionic liquid and 12-phosphotungstic acid salt with high assistant catalysis and proton conductivity. J Power Sour 158:103–109

    CAS  Google Scholar 

  20. Pourjavadi A, Hosseini SH, Matloubi Moghaddam F et al (2013) Tungstate based poly(ionic liquid) entrapped magnetic nanoparticles: a robust oxidation catalyst. Green Chem 15:2913–2919

    CAS  Google Scholar 

  21. Wu X, Tong X, Li Y et al (2014) Reversible phase transformation-type electrolyte based on Dawson-type POM and simple quaternary ammonium salt. J Solid State Electrochem 18:279–283

    CAS  Google Scholar 

  22. Bordoloi A, Sahoo S, Lefebvre F et al (2008) Heteropoly acid-based supported ionic liquid-phase catalyst for the selective oxidation of alcohols. J Catal 259:232–239

    CAS  Google Scholar 

  23. Ma P, Hu F, Wan R, Huo Y et al (2016) Magnetic double-tartaric bridging mono-lanthanide substituted phosphotungstates with photochromic and switchable luminescence properties. J Mater Chem C 4:5424–5433

    CAS  Google Scholar 

  24. Santos FM, Magina SP, Nogueira HIS et al (2016) Synthesis and characterization of metal-substituted tetraalkylphosphonium polyoxometalate ionic liquids. New J Chem 40:945–953

    CAS  Google Scholar 

  25. Politzer P, Peraltainga SZ, Bulat FA et al (2011) Average local ionization energies as a route to intrinsic atomic electronegativities. J Chem Theory Comput 7:377–384

    CAS  PubMed  Google Scholar 

  26. Cao YL, Wang L, Xu BH et al (2018) The Chitin/Keggin-type heteropolyacid hybrid microspheres as catalyst for oxidation of methacrolein to methacrylic acid. Chem Eng J 334:1657–1667

    CAS  Google Scholar 

  27. Han ZG, Li S, Wu JJ et al (2011) Hydrothermal synthesis and structural characterization of two new polytungstate-based hybrids. J Coord Chem 64:1525–1532

    CAS  Google Scholar 

  28. Tian AX, Ying J, Peng J et al (2008) Tuning the dimensionality of the coordination polymer based on polyoxometalate by changing the spacer length of ligands. Cryst Growth Des 8:3717–3724

    CAS  Google Scholar 

  29. Lisnard L, Dolbecq A, Mialane P et al (2005) Molecular and multidimensional polyoxotungstates functionalized by {Cu(bpy)}2+ groups. Dalton Trans 44:3913–3920

    Google Scholar 

  30. Xue X, Zhao W, Ma B et al (2012) Efficient oxidation of sulfides catalyzed by a temperature-responsive phase transfer catalyst [(C18H37)2(CH3)2N]7PW11O39 with hydrogen peroxide. Catal Commun 29:73–76

    CAS  Google Scholar 

  31. Jiang W, Zheng D, Xun S et al (2017) Polyoxometalate-based ionic liquid supported on graphite carbon induced solvent-free ultra-deep oxidative desulfurization of model fuels. Fuel 190:1–9

    CAS  Google Scholar 

  32. Rafiee E, Mirnezami F, Kahrizi M (2016) SO3H-functionalized organic-inorganic ionic liquids based on polyoxometalates characterization and their application in C−C coupling reaction. J Mol Struct 1119:332–339

    CAS  Google Scholar 

  33. Huang T, Tian N, Wu Q et al (2015) Synthesis, crystal structure and conductive mechanism of solid high-proton conductor tungstovanadosilicic heteropoly acid. Mater Chem Phys 165(Supplement C):34–38

    CAS  Google Scholar 

  34. Wang R, Jia D, Cao Y (2012) Facile synthesis and enhanced electrocatalytic activities of organic–inorganic hybrid ionic liquid polyoxometalate nanomaterials by solid-state chemical reaction. Electrochim Acta 72:101–107

    CAS  Google Scholar 

  35. Zhu W, Huang W, Li H et al (2011) Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels. Fuel Process Technol 92:1842–1848

    CAS  Google Scholar 

  36. Chiang MH, Dzielawa JA, Dietz ML et al (2004) Redox chemistry of the Keggin heteropolyoxotungstate anion in ionic liquids. J Electroanal Chem 567:77–84

    CAS  Google Scholar 

  37. Xu D, Yang Q, Su B et al (2014) Enhancing the basicity of ionic liquids by tuning the cation-anion interaction strength and via the anion-tethered strategy. J Phys Chem B 118:1071–1079

    CAS  PubMed  Google Scholar 

  38. Rao GR, Rajkumar T, Varghese B (2009) Synthesis and characterization of 1-butyl 3-methyl imidazolium phosphomolybdate molecular salt. Solid State Sci 11:36–42

    Google Scholar 

  39. Rajkumar T, Rao GR (2008) Synthesis and characterization of hybrid molecular material prepared by ionic liquid and silicotungstic acid. Mater Chem Phys 112:853–857

    CAS  Google Scholar 

  40. Shi J, Pan G (2008) Preparation of 1-Butyl-3-methylimidazolium dodecatungstophosphate and its catalytic performance for esterification of ethanol and acetic acid. Chin J Catal 29:629–632

    CAS  Google Scholar 

  41. Dong R, Wang NN, Wang Y et al (2014) Structure and photocatalytic performance of K1–3xMxTiNbO5 (M = Fe, Ce) for ethyl mercaptan. Russ J Appl Chem 87:1474–1480

    CAS  Google Scholar 

  42. Cen W, Liu Y, Wu Z et al (2012) A theoretic insight into the catalytic activity promotion of CeO2 surfaces by Mn doping. Phys Chem Chem Phys 14:5769–5777

    CAS  PubMed  Google Scholar 

  43. Sun M, Zhang J, Cao C et al (2008) Significant effect of acidity on catalytic behaviors of Cs-substituted polyoxometalates for oxidative dehydrogenation of propane. Appl Catal A 349:212–221

    CAS  Google Scholar 

  44. Basset JM, Zhu H, Laveille PV et al (2015) High-throughput reactor system for optimization of Mo-V-Nb mixed oxide catalysts composition in ethane ODH. Catal Sci Technol 5:4164–4173

    Google Scholar 

  45. Barthos R, Novodárszki G, Valyon J (2017) Heterogeneous catalytic Wacker oxidation of ethylene over oxide-supported Pd/VO x catalysts: the support effect. React Kinet Mech Catal 121:17–29

    CAS  Google Scholar 

  46. Moulder JF, Chastain J, King RC et al (1992) Handbook of x-ray photoelectron spectroscopy : a reference book of standard spectra for identification and interpretation of XPS data. Chem Phys Lett 220:7–10

    Google Scholar 

  47. Xu D (2014) Study on molecular basicity regulatory mechanism of ionic liquids and synthesis, characterization, and separation performance of ionic liquids with strong basicity and good lipotropy. M.S. Thesis, Zhejiang University.

  48. Niedermeyer H, Ashworth C, Brandt A et al (2013) A step towards the a priori design of ionic liquids. Phys Chem Chem Phys 15:11566–11578

    CAS  PubMed  Google Scholar 

  49. Bulat FA, Toro-Labbé A, Brinck T et al (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    CAS  PubMed  Google Scholar 

  50. Bai Y, Yan R, Huo F, Qian J et al (2017) Recovery of methacrylic acid from dilute aqueous solutions by ionic liquids though hydrogen bonding interaction. Sep Purif Technol 184:354–364

    CAS  Google Scholar 

  51. Maria PC, Gal JF, Franceschi JD et al (1987) ChemInform abstract: chemometrics of the solvent basicity: multivariate analysis of the basicity scales relevant to nonprotogenic solvents. Cheminform 18:483–492

    Google Scholar 

  52. Drago RS, Wayland BB (1987) A double-scale equation for correlating enthalpies of lewis acid-base interactions. J Am Chem Soc 87:3571–3577

    Google Scholar 

  53. Politzer P, Murray JS, Bulat FA et al (2010) Average local ionization energy: a review. J Mol Model 16:1731–1742

    CAS  PubMed  Google Scholar 

  54. Bulat FA, Toro-Labbe A, Brinck T et al (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    CAS  PubMed  Google Scholar 

  55. Murray JS, Politzer P (2010) The electrostatic potential: an overview. Wires Comput Mol Sci 1:153–163

    Google Scholar 

  56. Devereux M, Popelier PL, Mclay IM (2009) A refined model for prediction of hydrogen bond acidity and basicity parameters from quantum chemical molecular descriptors. Phys Chem Chem Phys 11:1595–1603

    CAS  PubMed  Google Scholar 

  57. Politzer P, Murray JS (2012) Halogen bonding and beyond: factors influencing the nature of CN–R and SiN–R complexes with F-Cl and Cl2. Int J Quant Chem 131:1–10

    CAS  Google Scholar 

  58. Politzer P, Murray JS, Concha MC (2002) The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes. Int J Quant Chem 88:19–27

    CAS  Google Scholar 

  59. Platts JA (2000) Theoretical prediction of hydrogen bond donor capacity. Phys Chem Chem Phys 2:973–980

    CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate for the Financial support from National Science Foundation of China (U1704251 and 2176240), Zhengzhou High Level Talent Certificate (20180200052), and the PhD Scientific Research Foundation of Pingdingshan University (PXY-BSQD-2019003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Hua Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 4452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, YL., Wang, L., Bai, YG. et al. Molybdovanadophosphoric Heteropolyacid-Catalyzed Aerobic Oxidation of Methacrolein: The Crucial Role of Ionic Liquid as a Modifier. Catal Lett 150, 1774–1785 (2020). https://doi.org/10.1007/s10562-019-03063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03063-4

Keywords

Navigation