Skip to main content
Log in

Immobilized N-Heterocyclic Carbene-Palladium(II) Complex on Graphene Oxide as Efficient and Recyclable Catalyst for Suzuki–Miyaura Cross-Coupling and Reduction of Nitroarenes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new and efficient N-heterocyclic carbene (NHC)-palladium(II) complex immobilized on graphene oxide (NHC-Pd@GO) has been successfully designed and synthesized. The prepared NHC-Pd@GO heterogeneous catalyst was fully characterized using a combination of fourier transform infrared spectroscopy (FTIR), inductively coupled plasma-optical emission spectroscopy (ICP-OES), energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller surface area analysis (BET). This new air- and moisture-stable NHC-Pd@GO heterogeneous catalytic system was found to be a highly active catalyst in the Suzuki–Miyaura cross-coupling between phenylboronic acid and various aryl halides (bromides/chlorides/iodides) and in the reduction of nitroarenes. These organic transformations were best performed in an aqueous ethanol and aqueous methanol solvent system respectively with low catalyst loading under mild reaction conditions. Furthermore, NHC-Pd@GO heterogeneous catalyst could be recovered easily and reused at least eleven times in Suzuki–Miyaura cross-coupling and nine times in reduction of nitroarenes without any considerable loss of its catalytic activity. The stability and good selectivity of the NHC-Pd@GO heterogeneous catalyst in recycling experiments signify that it could be useful for practical application in various organic transformations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Scheme 3
Fig. 10
Scheme 4
Scheme 5
Fig. 11

Similar content being viewed by others

References

  1. Miyaura N, Suzuki A (1995) Chem Rev 95:2457–2483

    CAS  Google Scholar 

  2. Suzuki A (2011) Angew Chem Int Ed Engl 50:6722–6737

    CAS  PubMed  Google Scholar 

  3. Chinchilla R, Najera C (2011) Chem Soc Rev 40:5084–5121

    CAS  PubMed  Google Scholar 

  4. Yin L, Liebscher J (2007) Chem Rev 107:133–173

    CAS  PubMed  Google Scholar 

  5. Magano J, Dunetz JR (2011) Chem Rev 111:2177–2250

    CAS  PubMed  Google Scholar 

  6. Phan NTS, Van Der Sluys M, Jones CW (2006) Adv Synth Catal 348:609–679

    CAS  Google Scholar 

  7. Corbet JP, Mignani G (2006) Chem Rev 106:2651–2710

    CAS  PubMed  Google Scholar 

  8. Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M (2002) Chem Rev 102:1359–1470

    CAS  PubMed  Google Scholar 

  9. Belardi JK, Micalizio GC (2008) Angew Chem Int Ed Engl 47:4005–4008

    CAS  PubMed  Google Scholar 

  10. Jia Y, Bois-Choussy M, Zhu J (2008) Angew Chem Int Ed Engl 47:4167–4172

    CAS  PubMed  Google Scholar 

  11. Stanforth SP (1998) Tetrahedron 54:263–303

    CAS  Google Scholar 

  12. Herrmann WA (2002) Angew Chem Int Ed Engl 41:1290–1309

    CAS  PubMed  Google Scholar 

  13. Botella L, Najera C (2002) Angew Chem Int Ed Engl 41:179–181

    CAS  PubMed  Google Scholar 

  14. Grasa GA, Hillier AC, Nolan SP (2001) Org Lett 3:1077–1080

    CAS  PubMed  Google Scholar 

  15. Old DW, Wolfe JP, Buchwald SL (1998) J Am Chem Soc 120:9722–9723

    CAS  Google Scholar 

  16. Patil SA, Weng C-M, Huang P-C, Hong F-E (2009) Tetrahedron 65:2889–2897

    CAS  Google Scholar 

  17. Dewan A, Bora U, Borah G (2014) Tetrahedron Lett 55:1689–1692

    CAS  Google Scholar 

  18. Downing RS, Kunkeler PJ, van Bekkum H (1997) Catal Today 37:121–136

    CAS  Google Scholar 

  19. Junge K, Schroder K, Beller M (2011) Chem Commun 47:4849–4859

    CAS  Google Scholar 

  20. Linares C, Mediavilla M, Pardey AJ, Baricelli P, Pardey CL, Moya SA (1998) Catal Lett 50:183–185

    CAS  Google Scholar 

  21. Orlandi M, Tosi F, Bonsignore M, Benaglia M (2015) Org Lett 17:3941–3943

    CAS  PubMed  Google Scholar 

  22. Yu C, Liu B, Hu L (2001) J Org Chem 66:919–924

    CAS  PubMed  Google Scholar 

  23. Peris E (2018) Chem Rev 118:9988–10031

    CAS  PubMed  Google Scholar 

  24. Marichev KO, Patil SA, Bugarin A (2018) Tetrahedron 74:2523–2546

    CAS  Google Scholar 

  25. Mpungose PP, Vundla ZP, Maguire GEM, Friedrich HB (2018) Molecules 23:1676–1700

    PubMed Central  Google Scholar 

  26. Patil SA, Patil SA, Patil R (2016) J Nano Res 42:112–135

    CAS  Google Scholar 

  27. Zhong R, Lindhorst AC, Groche FJ, Kuhn FE (2017) Chem Rev 117:1970–2058

    CAS  PubMed  Google Scholar 

  28. Wang W, Cui L, Sun P, Shi L, Yue C, Li F (2018) Chem Rev 118:9843–9929

    CAS  PubMed  Google Scholar 

  29. Yang J, Wu Y, Wu X, Liu W, Wang Y, Wang J (2019) Green Chem 21:5267–5273

    CAS  Google Scholar 

  30. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228–240

    CAS  PubMed  Google Scholar 

  31. Tan R, Li C, Luo J, Kong Y, Zheng W, Yin D (2013) J Catal 298:138–147

    CAS  Google Scholar 

  32. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Chem Mater 18:2740–2749

    Google Scholar 

  33. Guo S, Dong S, Wang E (2010) ACS Nano 4:547–555

    CAS  PubMed  Google Scholar 

  34. Guo S, Sun S (2012) J Am Chem Soc 134:2492–2495

    CAS  PubMed  Google Scholar 

  35. Bai C, Zhao Q, Li Y, Zhang G, Zhang F, Fan X (2014) Catal Lett 144:1617–1623

    CAS  Google Scholar 

  36. Khatri PK, Choudhary S, Singh R, Jain SL, Khatri OP (2014) Dalton Trans 43:8054–8061

    CAS  PubMed  Google Scholar 

  37. Mungse HP, Verma S, Kumar N, Sain B, Khatri OP (2012) J Mater Chem 22:5427–5433

    CAS  Google Scholar 

  38. Vishal K, Fahlman BD, Sasidhar BS, Patil SA, Patil SA (2017) Catal Lett 147:900–918

    CAS  Google Scholar 

  39. Kandathil V, Fahlman BD, Sasidhar BS, Patil SA, Patil SA (2017) New J Chem 41:9531–9545

    CAS  Google Scholar 

  40. Manjunatha K, Koley TS, Kandathil V, Dateer RB, Balakrishna G, Sasidhar BS, Patil SA, Patil SA (2018) Appl Organomet Chem 32:e4266

    Google Scholar 

  41. Kandathil V, Koley TS, Manjunatha K, Dateer RB, Keri RS, Sasidhar BS, Patil SA, Patil SA (2018) Inorg Chim Acta 478:195–210

    CAS  Google Scholar 

  42. Kempasiddhaiah M, Kandathil V, Dateer RB, Sasidhar BS, Patil SA, Patil SA (2019) Appl Organomet Chem 33:e4846

    Google Scholar 

  43. Bahrami K, Targhan H (2019) Appl Organomet Chem 33:e4842

    Google Scholar 

  44. Movahed SK, Esmatpoursalmani R, Bazgir A (2014) RSC Adv 4:14586–14591

    CAS  Google Scholar 

  45. Shang N, Gao S, Feng C, Zhang H, Wang C, Wang Z (2013) RSC Adv 3:21863–21868

    CAS  Google Scholar 

  46. Qian Y, So J, Jung S-Y, Hwang S, Jin M-J, Shim S (2019) Synthesis 51:2287–2292

    CAS  Google Scholar 

  47. Shang N, Feng C, Zhang H, Gao S, Tang R, Wang C, Wang Z (2013) Catal Commun 40:111–115

    CAS  Google Scholar 

  48. Baron M, Métay E, Lemaire M, Popowycz F (2013) Green Chem 15:1006–1015

    CAS  Google Scholar 

  49. Yang S-T, Shen P, Liao B-S, Liu Y-H, Peng S-M, Liu S-T (2017) Organometallics 36:3110–3116

    CAS  Google Scholar 

  50. Nandi D, Siwal S, Choudhary M, Mallick K (2016) Appl Catal A 523:31–38

    CAS  Google Scholar 

  51. Patil NM, Bhosale MA, Bhanage BM (2015) RSC Adv 5:86529–86535

    CAS  Google Scholar 

  52. Metin Ö, Mendoza-Garcia A, Dalmızrak D, Gültekin MS, Sun S (2016) Catal Sci Technol 6:6137–6143

    CAS  Google Scholar 

  53. Metin O, Can H, Sendil K, Gultekin MS (2017) J Colloid Interface Sci 498:378–386

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank DST-SERB, India (YSS/2015/000010), DST-Nanomission, India (SR/NM/NS-20/2014), and Jain University, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddappa A. Patil.

Ethics declarations

Conflict of interest

All authors declares that they have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandathil, V., Kulkarni, B., Siddiqa, A. et al. Immobilized N-Heterocyclic Carbene-Palladium(II) Complex on Graphene Oxide as Efficient and Recyclable Catalyst for Suzuki–Miyaura Cross-Coupling and Reduction of Nitroarenes. Catal Lett 150, 384–403 (2020). https://doi.org/10.1007/s10562-019-03083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03083-0

Keywords

Navigation