Skip to main content

Advertisement

Log in

Preparation of graphene-embedded hydroxypropyl cellulose/chitosan/polyethylene oxide nanofiber membranes as wound dressings with enhanced antibacterial properties

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Electrospun nanofiber membranes possess high specific surface area with small pores and thus can be developed as wound dressings for absorbing exudate and also preventing bacterial penetration. In this study, hydroxypropyl cellulose (H), chitosan (C) and polyethylene oxide (P) were chosen as membrane materials to increase the hydrophilicity, anti-bacterial property, and yield of nanofibers, respectively. Additionally, graphene (G) was added to enhance the anti-bacterial property of the membranes. As indicated by SEM, the HCP and HCPG solutions (containing H:4.5 wt%, C:4.5 wt%, P:0.75 wt%, without/with G:0.5 wt%) could be electrospun into HCP and HCPG nanofiber membranes with good fiber morphology using a non-toxic solvent system. Further, the membranes were crosslinked by glutaraldehyde vapor to improve the strength. The tensile strength of the membranes was 1.38–1.82 MPa with a swelling ratio up to 1330–1410%. The water vapor transmission rate (WVTR) of wet HCPG membrane was about 3100 g/m2-day, close to the recommended WVTR of wound dressings. The anti-bacterial properties of the membranes were confirmed using three tests against Escherichia coli (Gram-negative bacterium) and Staphylococcus aureus (Gram-positive bacterium). Highly hydrophilic HCP and HCPG membranes prevented the bacterial adherence. The presence of the membranes (especially graphene-embedded HCPG membrane) also greatly reduced bacterial growth. The small pore sizes of HCP and HCPG nanofiber membranes prevented the bacterial penetration to cause infection. Taken together, the HCP and HCPG nanofiber membranes possessed good mechanical properties, appropriate WVTR and high water absorption thus suitable for absorbing wound exudate. Besides, the membranes exhibited nontoxic, anti-fibroblast adhesion and anti-bacterial properties. Therefore, HCP and HCPG nanofiber membranes have the potential to become superior anti-bacterial wound dressings.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    Article  PubMed  CAS  Google Scholar 

  • Ardila N, Medina N, Arkoun M, Heuzey M-C, Ajji A, Panchal CJ (2016) Chitosan-bacterial nanocellulose nanofibrous structures for potential wound dressing applications. Cellulose 23:3089–3104

    Article  CAS  Google Scholar 

  • Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29:48–56

    Article  CAS  Google Scholar 

  • Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F (1999) Mitochondria and cell death. Eur J Biochem 264:687–701

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Luo X, Zhang H, Fu Z, Shen Z, Cai N, Xue Y, Yu F (2016) A facile and green strategy for the preparation of porous chitosan-coated cellulose composite membranes for potential applications as wound dressing. Cellulose 23:1349–1361

    Article  CAS  Google Scholar 

  • Chang AKT, Frias RR, Alvarez LV, Bigol UG, Guzman JPMD (2019) Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatal Agric Biotechnol 17:189–195

    Article  Google Scholar 

  • Chen PW (2012) Preparation and characterization of multicomponent chitosan composite dressings. Master’s Thesis, National Taiwan University, Taipei, Taiwan

  • Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A 313–314:183–188

    Article  CAS  Google Scholar 

  • Chen CT, Huang Y, Zhu CL, Nie Y, Yang JZ, Sun DP (2014) Synthesis and characterization of hydroxypropyl cellulose from bacterial cellulose. Chin J Polym Sci 32:439–448

    Article  CAS  Google Scholar 

  • Çiplak Z, Yildiz N, Çalimli A (2015) Investigation of graphene/ag nanocomposites synthesis parameters for two different synthesis methods. Fuller Nanotub Carbon Nanostruct 23:361–370

    Article  CAS  Google Scholar 

  • Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  • Dhivya S, Padma VV, Santhini E (2015) Wound dressings—a review. BioMedicine 5:24–28

    Article  Google Scholar 

  • Ding YH, Ren HM, Chang FH, Zhang P, Jiang Y (2013) Intrinsic structure and friction properties of graphene and graphene oxide nanosheets studied by scanning probe microscopy. Bull Mater Sci 36:1073–1077

    Article  CAS  Google Scholar 

  • Goy RC, Morais STB, Assis OBG (2016) Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia 26:122–127

    Article  CAS  Google Scholar 

  • Hegab HM, ElMekawy A, Zou L, Mulcahy D, Saint CP, Ginic-Markovic M (2016) The controversial antibacterial activity of graphene-based materials. Carbon 105:362–376

    Article  CAS  Google Scholar 

  • Holbrook RD, Rykaczewski K, Staymates ME (2014) Dynamics of silver nanoparticle release from wound dressings revealed via in situ nanoscale imaging. J Mater Sci Mater Med 25:2481–2489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji H, Sun H, Qu X (2016) Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev 105:176–189

    Article  PubMed  CAS  Google Scholar 

  • Jin SG, Yousaf AM, Kim KS, Kim DW, Kim DS, Kim JK, Yong CS, Youn YS, Kim JO, Choi HG (2016) Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings. Int J Pharm 501:160–166

    Article  PubMed  CAS  Google Scholar 

  • Kamoun EA, Kenawy E-RS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: pva-based hydrogel dressings. J Adv Res 8:217–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knaul JZ, Hudson SM, Creber KAM (1999) Crosslinking of chitosan fibers with dialdehydes: proposal of a new reaction mechanism. J Polym Sci Part B: Polym Phys 37:1079–1094

    Article  CAS  Google Scholar 

  • Kubota N, Tatsumoto N, Sano T, Toya K (2000) A simple preparation of half n-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohyd Res 324:268–274

    Article  CAS  Google Scholar 

  • Kuo TY, Lin CM, Hung SC, Hsien TY, Wang DM, Hsieh HJ (2018) Incorporation and selective removal of space-forming nanofibers to enhance the permeability of cytocompatible nanofiber membranes for better cell growth. J Taiwan Inst Chem Eng 91:146–154

    Article  CAS  Google Scholar 

  • Liang D, Lu Z, Yang H, Gao J, Chen R (2016) Novel asymmetric wettable agnps/chitosan wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 8:3958–3968

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Liu Y, Liu M, Wang Y, He W, Shi G, Hu X, Zhan R, Luo G, Xing M, Wu J (2018) Synthesis of graphene oxide-quaternary ammonium nanocomposite with synergistic antibacterial activity to promote infected wound healing. Burns Trauma 6:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu X, Feng X, Werber JR, Chu C, Zucker I, Kim JH, Osuji CO, Elimelech M (2017a) Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc Natl Acad Sci 114:E9793–E9801

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, Chen R (2017b) Enhanced antibacterial and wound healing activities of microporous chitosan-ag/zno composite dressing. Carbohyd Polym 156:460–469

    Article  CAS  Google Scholar 

  • Mahmoudi N, Eslahi N, Mehdipour A, Mohammadi M, Akbari M, Samadikuchaksaraei A, Simchi A (2017) Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. J Mater Sci Mater Med 28:73

    Article  PubMed  CAS  Google Scholar 

  • Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173

    Article  PubMed  CAS  Google Scholar 

  • Mirjalili M, Zohoori S (2016) Review for application of electrospinning and electrospun nanofibers technology in textile industry. J Nanostruct Chem 6:207–213

    Article  CAS  Google Scholar 

  • Misra SK, Ramteke PW, Patil S, Pandey AC, Pandey H (2018) Tolnaftate–graphene composite-loaded nanoengineered electrospun scaffolds as efficient therapeutic dressing material for regimen of dermatomycosis. Appl Nanosc 8:1629–1640

    Article  CAS  Google Scholar 

  • Mohamed NA, Abd El-Ghany NAJC (2019) Synthesis, characterization and antimicrobial activity of novel aminosalicylhydrazide cross linked chitosan modified with multi-walled carbon nanotubes. Cellulose 26:1141–1156

    Article  CAS  Google Scholar 

  • Pang L, Dai C, Bi L, Guo Z, Fan J (2017) Biosafety and antibacterial ability of graphene and graphene oxide in vitro and in vivo. Nanoscale Res Lett 12:564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park JU, Jeong SH, Song EH, Song J, Kim HE, Kim S (2018) Acceleration of the healing process of full-thickness wounds using hydrophilic chitosan–silica hybrid sponge in a porcine model. J Biomater Appl 32:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Pawlicka A, Sabadini RC, Nunzi J-MJC (2018) Reversible light-induced solubility of disperse red 1 dye in a hydroxypropyl cellulose matrix. Cellulose 25:2083–2090

    Article  CAS  Google Scholar 

  • Pérez-Díaz M, Alvarado-Gomez E, Magaña-Aquino M, Sánchez-Sánchez R, Velasquillo C, Gonzalez C, Ganem-Rondero A, Martínez-Castañon G, Zavala-Alonso N, Martinez-Gutierrez F (2016) Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Mater Sci Eng C 60:317–323

    Article  CAS  Google Scholar 

  • Queen D, Gaylor JDS, Evans JH, Courtney JM, Reid WH (1987) The preclinical evaluation of the water vapour transmission rate through burn wound dressings. Biomaterials 8:367–371

    Article  PubMed  CAS  Google Scholar 

  • Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential–a critical literature survey. Microb Biotechnol 2:186–201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sahariah P, Másson M (2017) antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship. Biomacromol 18:3846–3868

    Article  CAS  Google Scholar 

  • Saquing CD, Tang C, Monian B, Bonino CA, Manasco JL, Alsberg E, Khan SA (2013) Alginate–polyethylene oxide blend nanofibers and the role of the carrier polymer in electrospinning. Ind Eng Chem Res 52:8692–8704

    Article  CAS  Google Scholar 

  • Sarabahi S (2012) Recent advances in topical wound care. Indian Journal of Plastic Surgery 45:379–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Schunck M, Neumann C, Proksch E (2005) Artificial barrier repair in wounds by semi-occlusive foils reduced wound contraction and enhanced cell migration and reepithelization in mouse skin. J Investig Dermatol 125:1063–1071

    Article  PubMed  CAS  Google Scholar 

  • Selig HF, Lumenta DB, Giretzlehner M, Jeschke MG, Upton D, Kamolz LP (2012) The properties of an “ideal” burn wound dressing – What do we need in daily clinical practice? Results of a worldwide online survey among burn care specialists. Burns 38:960–966

    Article  PubMed  Google Scholar 

  • Smiechowicz E, Niekraszewicz B, Kulpinski P, Dzitko K (2018) Antibacterial composite cellulose fibers modified with silver nanoparticles and nanosilica. Cellulose 25:3499–3517

    Article  CAS  Google Scholar 

  • Sophie ELB, Giuseppe T, Parikshit G, Chris C, Stephen JR (2017) Antibacterial properties of nonwoven wound dressings coated with manuka honey or methylglyoxal. Materials 10:954

    Article  CAS  Google Scholar 

  • Stockert JC, Blázquez-Castro A, Cañete M, Horobin RW, Villanueva Á (2012) MTT assay for cell viability: intracellular localization of the formazan product is in lipid droplets. Acta Histochem 114:785–796

    Article  PubMed  CAS  Google Scholar 

  • Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C, Fang H, Zhou R (2013) Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8:594–601

    Article  PubMed  CAS  Google Scholar 

  • Tuson HH, Weibel DB (2013) Bacteria-surface interactions. Soft Matter 9:4368–4380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohyd Polym 164:268–283

    Article  CAS  Google Scholar 

  • Wang S-D, Ma Q, Wang K, Chen H-W (2018) Improving antibacterial activity and biocompatibility of bioinspired electrospinning silk fibroin nanofibers modified by graphene oxide. ACS Omega 3:406–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu X, Tan S, Xing Y, Pu Q, Wu M, Zhao JX (2017) Graphene oxide as an efficient antimicrobial nanomaterial for eradicating multi-drug resistant bacteria in vitro and in vivo. Colloids Surf B 157:1–9

    Article  CAS  Google Scholar 

  • Xu R, Xia H, He W, Li Z, Zhao J, Liu B, Wang Y, Lei Q, Kong Y, Bai Y, Yao Z, Yan R, Li H, Zhan R, Yang S, Luo G, Wu J (2016) Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci Rep 6:24596

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan Y, Hays MP, Hardwidge PR, Kim J (2017) Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv 7:14254–14261

    Article  CAS  Google Scholar 

  • Yüksel E, Karakeçili A (2014) Antibacterial activity on electrospun poly(lactide-co-glycolide) based membranes via magainin II grafting. Mater Sci Eng C 45:510–518

    Article  CAS  Google Scholar 

  • Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2:204–226

    Article  CAS  Google Scholar 

  • Zhang Q, Tu Q, Hickey ME, Xiao J, Gao B, Tian C, Heng P, Jiao Y, Peng T, Wang J (2018) Preparation and study of the antibacterial ability of graphene oxide-catechol hybrid polylactic acid nanofiber mats. Colloids Surf B 172:496–505

    Article  CAS  Google Scholar 

  • Zheng H, Ma R, Gao M, Tian X, Li Y-Q, Zeng L, Li R (2018) Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety. Sci Bull 63:133–142

    Article  CAS  Google Scholar 

  • Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromol 12:2617–2625

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Science and Technology, Taiwan (Grant Numbers: MOST 104-2221-E-002-174 and MOST 105-2221-E-002-202). Hydroxypropyl cellulose and graphene powder were kindly provided by Eternal Materials Co. (Kaohsiung, Taiwan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsyue-Jen Hsieh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CM., Chang, YC., Cheng, LC. et al. Preparation of graphene-embedded hydroxypropyl cellulose/chitosan/polyethylene oxide nanofiber membranes as wound dressings with enhanced antibacterial properties. Cellulose 27, 2651–2667 (2020). https://doi.org/10.1007/s10570-019-02940-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02940-w

Keywords

Navigation