Skip to main content
Log in

Boronic acid-modified polyhedral oligomeric silsesquioxanes on polydopamine-coated magnetized graphene oxide for selective and high-capacity extraction of the catecholamines epinephrine, dopamine and isoprenaline

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Amino-functionalized polyhedral oligomeric silsesquioxanes (POSS-8NH2) were covalently bound to the surface of polydopamine-coated magnetized graphene oxide. It was then reacted with 4-formylphenylboronic acid to prepare a “cubic boronic acid”-bonded magnetic graphene oxide adsorbent. The new adsorbent exhibits better selectivity and much higher adsorption capacity for ortho-phenols over adsorbents where small boronic ligands are directly bound to the surface of the material. It is shown to enable selective and faster enrichment of the catecholamines epinephrine (EP), dopamine (DA) and isoprenaline (IP) with high selectivity over many potential interferents that can occur in urine. The analytes were then quantified by HPLC with fluorometric detection. Under optimal conditions, response is linear (R2 ≥ 0.9907), limits of detection are low (0.54–2.3 ng·mL−1), and reproducibility is acceptable (inter- and intra-day assay RSDs of≤10.9%). The method was successfully applied to the determination of endogenous EP and DA and exogenous IP in urine samples.

Schematic of boronic acid (BA)-modified polyhedral oligomeric silsesquioxanes (POSS) on polydopamine-coated magnetized graphene oxide (magGO). The material (magGO@POSS-BA) has good selectivity and higher adsorption capacity to ortho-phenols and can be applied to enrich the catecholamines in urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li DJ, Chen Y, Liu Z (2015) Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 44:8097–8123. https://doi.org/10.1039/C5CS00013K

    Article  CAS  PubMed  Google Scholar 

  2. Wang W, He MF, Wang CZ, Wei YM (2015) Enhanced binding capacity of boronate affinity adsorbent via surface modification of silica by combination of atom transfer radical polymerization and chain-end functionalization for high-efficiency enrichment of cis-diol molecules. Anal Chim Acta 886:66–74. https://doi.org/10.1016/j.aca.2015.06.015

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Huang AL, Zhang YN, Bie ZJ (2019) Recent advances of boronate affinity materials in sample preparation. Anal Chim Acta 1076:1–17. https://doi.org/10.1016/j.aca.2019.04.050

    Article  CAS  PubMed  Google Scholar 

  4. Jiang LW, Chen YB, Luo YM, Tan YM, Ma M, Chen B, Xie QJ, Luo XB (2015) Determination of catecholamines in urine using aminophenylboronic acid functionalized magnetic nanoparticles extraction followed by high-performance liquid chromatography and electrochemical detection. J Sep Sci 38:460–467. https://doi.org/10.1002/jssc.201400920

    Article  CAS  PubMed  Google Scholar 

  5. Deng YN, Gao Q, Ma J, Wang CZ, Wei YM (2018) Preparation of a boronate affinity material with ultrahigh binding capacity for cis-diols by grafting polymer brush from polydopamine-coated magnetized graphene oxide. Microchim Acta 185:189–196. https://doi.org/10.1007/s00604-018-2732-7

    Article  CAS  Google Scholar 

  6. Wu YL, Liu QJ, Xie YQ, Deng CH (2018) Core-shell structured magnetic metal-organic framework composites for highly selective enrichment of endogenous N-linked glycopeptides and phosphopeptides. Talanta 190:298–312. https://doi.org/10.1016/j.talanta.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  7. He HB, Sun YR, Li B, Yu QW, Wang TL, Feng YQ (2013) Boronate affinity solid-phase extraction based on functionalized magnesia-zirconia composite for enrichment of nucleosides in human urine. Anal Methods 5:1435–1441. https://doi.org/10.1039/C2AY26420J

    Article  CAS  Google Scholar 

  8. Wang ST, Chen D, Ding J, Yuan BF, Feng YQ (2013) Borated titania, a new option for the selective enrichment of cis-diol biomolecules. Chem Eur J 19:606–612. https://doi.org/10.1002/chem.201203109

    Article  CAS  PubMed  Google Scholar 

  9. Li HH, Zhu SQ, Cheng T, Wang SX, Zhu B, Liu XY, Zhang HX (2016) Binary boronic acid-functionalized attapulgite with high adsorption capacity for selective capture of nucleosides at acidic pH values. Microchim Acta 183:1779–1786. https://doi.org/10.1007/s00604-016-1808-5

    Article  CAS  Google Scholar 

  10. Du J, He MF, Wang XM, Fan H, Wei YM (2015) Facile preparation of boronic acid-functionalized magnetic nanoparticles with a high capacity and their use in the enrichment of cis-diol-containing compounds from plasma. Biomed Chromatogr 29:312–320. https://doi.org/10.1002/bmc.3277

    Article  CAS  PubMed  Google Scholar 

  11. Pan YN, Gao XM, Li SS, Liu XY, Zhang HX (2018) A boronate-decorated porous carbon material derived from a zinc-based metal-organic framework for enrichment of cis-diol-containing nucleosides. New J Chem 42:2288–2294. https://doi.org/10.1039/C7NJ04575A

    Article  CAS  Google Scholar 

  12. Hyland K (1999) Presentation, diagnosis, and treatment of the disorders of monoamine neurotransmitter metabolism. Semin Perinatol 23:194–203. https://doi.org/10.1016/S0146-0005(99)80051-2

    Article  CAS  PubMed  Google Scholar 

  13. Elesber A, Nishimura RA, Rihal CS, Ommen SR, Schaff HV, Holmes DR (2017) Utility of isoproterenol to provoke outflow tract gradients in patients with hypertrophic cardiomyopathy. Am J Cardiol 120:338. https://doi.org/10.1016/j.amjcard.2016.09.005

    Article  Google Scholar 

  14. Zhang GD, Zhang YZ, Ji CJ, McDonald T, Walton J, Groeber EA, Steenwyk RC, Lin ZS (2012) Ultra sensitive measurement of endogenous epinephrine and norepinephrine in human plasma by semi-automated SPE–LC–MS/MS. J Chromatogr B 895–896:186–190. https://doi.org/10.1016/j.jchromb.2012.03.026

    Article  CAS  Google Scholar 

  15. Raggi MA, Sabbioni C, Nicoletta G, Mandrioli R, Gerra G (2003) Analysis of plasma catecholamines by liquid chromatography with amperometric detection using a novel SPE ion-exchange procedure. J Sep Sci 26:1141–1146. https://doi.org/10.1002/jssc.200301486

    Article  CAS  Google Scholar 

  16. He HB, Zhou ZQ, Dong C, Wang X, Yu QW, Lei YY, Luo LQ, Feng YQ (2016) Facile synthesis of a boronate affinity sorbent from mesoporous nanomagnetic polyhedral oligomeric silsesquioxanes composite and its application for enrichment of catecholamines in human urine. Anal Chim Acta 944:1–13. https://doi.org/10.1016/j.aca.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  17. He MF, Wang CZ, Wei YM (2016) Selective enrichment and determination of monoamine neurotransmitters by cu (II) immobilized magnetic solid phase extraction coupled with high-performance liquid chromatography-fluorescence detection. Talanta 147:437–444. https://doi.org/10.1016/j.talanta.2015.10.017

    Article  CAS  PubMed  Google Scholar 

  18. Talwar D, Williamson C, McLaughlin A, Gill A, O’Reilly DSJ (2002) Extraction and separation of urinary catecholamines as their diphenyl boronate complexes using C18 solid-phase extraction sorbent and high-performance liquid chromatography. J Chromatogr B 769:341–349. https://doi.org/10.1016/S1570-0232(02)00022-3

    Article  CAS  Google Scholar 

  19. Xu HH, Wang CZ, Wei YM (2018) A boronate affinity restricted-access material with external hydrophilic bottlebrush polymers for pretreatment of cis-diols in biological matrices. Chin Chem Lett 29:521–523. https://doi.org/10.1016/j.cclet.2017.08.056

    Article  CAS  Google Scholar 

  20. Alves F, Scholder P, Nischang I (2013) Conceptual design of large surface area porous polymeric hybrid media based on polyhedral oligomeric silsesquioxane precursors: preparation, tailoring of porous properties, and internal surface functionalization. ACS Appl Mater Interfaces 5:2517–2526. https://doi.org/10.1021/am303048y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Zhuang YT, Shen HY, Chen XW, Wang JH (2017) A super hydrophilic silsesquioxane-based composite for highly selective adsorption of glycoproteins. Microchim Acta 184(4):1037–1044. https://doi.org/10.1007/s00604-017-2100-z

    Article  CAS  Google Scholar 

  22. Wang XY, Song GX, Deng CH (2015) Development of magnetic grapheme @hydrophilic polydopamine for the enrichment and analysis of phthalates in environmental water samples. Talanta 132:753–759. https://doi.org/10.1016/j.talanta.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  23. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11:1214–1221. https://doi.org/10.1038/nm1314

    Article  CAS  PubMed  Google Scholar 

  24. Li QJ, Lü CC, Li HY, Liu YC, Wang HY, Wang X, Liu Z (2012) Preparation of organic-silica hybrid boronate affinity monolithic column for the specific capture and separation of cis-diol containing compounds. J Chromatogr A 1256:114–120. https://doi.org/10.1016/j.chroma.2012.07.063

    Article  CAS  PubMed  Google Scholar 

  25. Fan H, Wang CZ, Wei YM (2015) Synthesis and application of boronic acid-functionalized magnetic adsorbent for sensitive analysis of salbutamol residues in pig tissues. Biomed Chromatogr 29:1834–1841. https://doi.org/10.1002/bmc.3504

    Article  CAS  PubMed  Google Scholar 

  26. Dong Q, Chi SS, Deng XY, Lan YH, Peng C, Dong LY, Wang XH (2018) Boronate affinity monolith via two-step atom transfer radical polymerization for specific capture of cis-diol-containing compounds. Eur Polym J 100:270–277. https://doi.org/10.1016/j.eurpolymj.2018.02.007

    Article  CAS  Google Scholar 

  27. Li DJ, Li Y, Li XL, Bie ZJ, Pan XH, Zhang Q, Liu Z (2015) A high boronate avidity monolithic capillary for the selective enrichment of trace glycoproteins. J Chromatogr A 1384:88–96. https://doi.org/10.1016/j.chroma.2015.01.050

    Article  CAS  PubMed  Google Scholar 

  28. Cheng T, Zhu SQ, Zhu B, Liu XY, Zhang HX (2016) Highly selective capture of nucleosides with boronic acid functionalized polymer brushes prepared by atom transfer radical polymerization. J Sep Sci 39:1347–1356. https://doi.org/10.1002/jssc.201500968

    Article  CAS  PubMed  Google Scholar 

  29. Wang CZ, Xu HH, Wei YM (2016) The preparation of high-capacity boronate affinity adsorbents by surface initiated reversible addition fragmentation chain transfer polymerization for the enrichment of ribonucleosides in serum. Anal Chim Acta 902:115–122. https://doi.org/10.1016/j.aca.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  30. Neyertz S, Brown D, Pilz M, Rival N, Arstad B, Männle F, Simon C (2015) Stability of amino-functionalized polyhedral oligomeric silsesquioxanes in water. J Phys Chem B 119:6433–6447. https://doi.org/10.1021/acs.jpcb.5b01955

    Article  CAS  PubMed  Google Scholar 

  31. Westerlnk BH, Bosker FJ, O’Hanlon JF (1982) Use of alumina, sephadex G 10, and ion-exchange columns to purify samples for determination of epinephrine, norepinephrine, dopamine, homovanillic acid, and 5-hydroxyindoleacetic acid in urine. Clin Chem 28:1745–1748

    Article  Google Scholar 

  32. González O, Blanco ME, Iriarte G, Bartolomé L, Maguregui MI, Alonso RM (2014) Bioanalytical chromatographic method validation according to current regulations, with a special focus on the non-well defined parameters limit of quantification, robustness and matrix effect. J Chromatogr A 1353:10–27. https://doi.org/10.1016/j.chroma.2014.03.077

    Article  CAS  PubMed  Google Scholar 

  33. Ling X, Chen ZL (2018) Boronate affinity solid-phase extraction of cis-diol compounds by a one-step electrochemically synthesized selective polymer sorbent. Anal Bioanal Chem 410:501–508. https://doi.org/10.1007/s00216-017-0740-9

    Article  CAS  PubMed  Google Scholar 

  34. Espina-Benitez MB, Randon J, Demesmay C, Dugas V (2017) Development and application of a new in-line coupling of a miniaturized boronate affinity monolithic column with capillary zone electrophoresis for the selective enrichment and analysis of cis-diol-containing compounds. J Chromatogr A 1494:65–76. https://doi.org/10.1016/j.chroma.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  35. Yang XT, Hu YF, Li GK (2014) Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine. J Chromatogr A 1342:37–43. https://doi.org/10.1016/j.chroma.2014.03.041

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 21775121 and 21974106), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20126101120023) and Discipline Innovation Team Program of Shaanxi University of Chinese Medicine (No. 2019-YL10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinmao Wei.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 4438 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Tang, Y., Chen, Y. et al. Boronic acid-modified polyhedral oligomeric silsesquioxanes on polydopamine-coated magnetized graphene oxide for selective and high-capacity extraction of the catecholamines epinephrine, dopamine and isoprenaline. Microchim Acta 187, 77 (2020). https://doi.org/10.1007/s00604-019-4036-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4036-y

Keywords

Navigation