Skip to main content
Log in

GSH-triggered sequential catalysis for tumor imaging and eradication based on star-like Au/Pt enzyme carrier system

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Distinctively different metabolism between tumor cells and normal cells endows tumor tissues unique microenvironment. In this regard, we have successfully prepared a sequential catalytic platform based on Au/Pt star for tumor theragnostic. The multifunctional probes consisted of a gold/platinum star-shaped core (Au/Pt star) conjugated with a GSH-sensitive disulfide bond (S–S), a targeting ligand (rHSA-FA), a near-infrared fluorophore (IR780) and glucose oxidase (GOx). When systemically administered in a xenografted murine model, the probes specifically targeted the tumor sites. As the disulfide linker was cleaved by intracellular GSH, the IR780 molecules could be released for photo-thermal therapy & photodynamic therapy (PTT&PDT) and imaging. Subsequently, the Pt nanolayer of the Au/Pt star and the GOx formed a sequential catalytic system: GOx effectively catalyzed intracellular glucose by consuming oxygen to generate H2O2 and enhance the local acidity, and the Pt layer exhibited peroxidase-like property to catalyze H2O2 producing toxic ·OH for tumor oxidative damage. Here we demonstrated that our probes simultaneously possessed a GSH-sensitive release, real-time imaging ability, and synergetic cancer starving-like therapy/enzyme oxidative therapy/PTT/PDT features, which provides a potential strategy for effective tumor theragnostic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Harmsen, S.; Matthew, R. H.; Wall, M. A.; Karabeber, H.; Samii, J. M.; Spaliviero, M.; White, J. R.; Monette, S.; O’Connor, R.; Pitter, K. L. et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci. Transl. Med.2015, 7, 271ra7.

    Article  Google Scholar 

  2. Zhang, C. L.; Li, C.; Liu, Y. L.; Zhang, J. P.; Bao, C. C.; Liang, S. J.; Wang, Q.; Yang, Y.; Fu, H. L.; Wang, K. et al. Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors. Adv. Funct. Mater.2015, 25, 1314–1325.

    Article  CAS  Google Scholar 

  3. Zhu, P.; Chen, Y.; Shi, J. L. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano2018, 12, 3780–3795.

    Article  CAS  Google Scholar 

  4. Alves, C. G.; Lima-Sousa, R.; de Melo-Diogo, D.; Louro, R. O.; Correia, I. J. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies. Int. J. Pharm.2018, 542, 164–175.

    Article  CAS  Google Scholar 

  5. Liu, Y. L.; Yang, M.; Zhang, J. P.; Zhi, X.; Li, C.; Zhang, C. L.; Pan, F.; Wang, K.; Yang, Y. M.; Martinez de la Fuentea, J. et al. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano2016, 10, 2375–2385.

    Article  CAS  Google Scholar 

  6. Zhang, Q.; Yin, T.; Gao, G.; Shapter, J. G.; Lai, W. E.; Huang, P.; Qi, W.; Song, J.; Cui, D. X. Multifunctional core@shell magnetic nanoprobes for enhancing targeted magnetic resonance imaging and fluorescent labeling in vitro and in vivo. ACS Appl. Mater. Interfaces2017, 9, 17777–17785.

    Article  CAS  Google Scholar 

  7. Yuan, A. H.; Qiu, X. F.; Tang, X. L.; Liu, W.; Wu, J. H.; Hu, Y. Q. Self-assembled PEG-IR-780-C13 micelle as a targeting, safe and highly-effective photothermal agent for in vivo imaging and cancer therapy. Biomaterials2015, 51, 184–193.

    Article  CAS  Google Scholar 

  8. Hou, W. X.; Xia, F. F.; Alves, C. S.; Qian, X. Q.; Yang, Y. M.; Cui, D. X. MMP2-targeting and redox-responsive PEGylated chlorin e6 nanoparticles for cancer near-infrared imaging and photodynamic therapy. ACS Appl. Mater. Interfaces2016, 8, 1447–1457.

    Article  CAS  Google Scholar 

  9. Zhang, Y. H.; Zhang, Q.; Zhang, A. M.; Pan, S. J.; Cheng, J.; Zhi, X.; Ding, X. T.; Hong, L. X.; Zi, M.; Cui, D. X. et al. Multifunctional co-loaded magnetic nanocapsules for enhancing targeted MR imaging and in vivo photodynamic therapy. Nanomedicine2019, 21, 102047.

    Article  CAS  Google Scholar 

  10. Zhang, E. L.; Luo, S. L.; Tan, X.; Shi, C. M. Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent. Biomaterials2014, 35, 771–778.

    Article  CAS  Google Scholar 

  11. Peng, C.; Xing, H. H.; Fan, X. S.; Xue, Y.; Li, J.; Wang, E. K. Glutathione regulated inner filter effect of MnO2 nanosheets on boron nitride quantum dots for sensitive assay. Anal. Chem.2019, 91, 5762–5767.

    Article  CAS  Google Scholar 

  12. Sun, J. L.; Liu, F.; Yu, W. Q.; Jiang, Q. Y.; Hu, J. L.; Liu, Y. H.; Wang, F.; Liu, X. Q. Highly sensitive glutathione assay and intracellular imaging with functionalized semiconductor quantum dots. Nanoscale2019, 11, 5014–5020.

    Article  CAS  Google Scholar 

  13. Liu, Z. L.; Shen, N.; Tang, Z. H.; Zhang, D. W.; Ma, L. L.; Yang, C. G.; Chen, X. S. An eximious and affordable GSH stimulus-responsive poly(α-lipoic acid) nanocarrier bonding combretastatin A4 for tumor therapy. Biomater. Sci.2019, 7, 2803–2811.

    Article  CAS  Google Scholar 

  14. Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun.2017, 8, 357.

    Article  Google Scholar 

  15. Fu, L. H.; Qi, C.; Lin, J.; Huang, P. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev.2018, 47, 6454–6472.

    Article  CAS  Google Scholar 

  16. Chang, K. W.; Liu, Z. H.; Fang, X. F.; Chen, H. B.; Men, X. J.; Yuan, Y.; Sun, K.; Zhang, X. J.; Yuan, Z.; Wu, C. F. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide. Nano Lett.2017, 17, 4323–4329.

    Article  CAS  Google Scholar 

  17. Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun.2018, 9, 3334.

    Article  Google Scholar 

  18. Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev.2017, 117, 13566–13638.

    Article  CAS  Google Scholar 

  19. Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front.2016, 3, 41–60.

    Article  CAS  Google Scholar 

  20. Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev.2019, 48, 3683–3704.

    Article  CAS  Google Scholar 

  21. Zhao, M. T.; Deng, K.; He, L. C.; Liu, Y.; Li, G. D.; Zhao, H. J.; Tang, Z. Y. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc.2014, 136, 1738–1741.

    Article  CAS  Google Scholar 

  22. Du, K. K.; Liu, Q. Q.; Liu, M.; Lv, R. M.; He, N. Y.; Wang, Z. F. Encapsulation of glucose oxidase in Fe(III)/tannic acid nanocomposites for effective tumor ablation via Fenton reaction. Nanotechnology2019, 31, 015101.

    Article  Google Scholar 

  23. Liu, M.; Liu, B.; Liu, Q. Q.; Du, K. K.; Wang, Z. F.; He, N. Y. Nanomaterial-induced ferroptosis for cancer specific therapy. Coordin. Chem. Rev.2019, 382, 160–180.

    Article  CAS  Google Scholar 

  24. Lyu, Y.; Tian, J. Q.; Li, J. C.; Chen, P.; Pu, K. Y. Semiconducting polymer nanobiocatalysts for photoactivation of intracellular redox reactions. Angew. Chem., Int. Ed.2018, 57, 13484–13488.

    Article  CAS  Google Scholar 

  25. Li, J. C.; Xie, C.; Huang, J. G.; Jiang, Y. Y.; Miao, Q. Q.; Pu, K. Y. Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angew. Chem., Int. Ed.2018, 57, 3995–3998.

    Article  CAS  Google Scholar 

  26. Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater.2010, 22, 2206–2210.

    Article  CAS  Google Scholar 

  27. Gao, S. S.; Lin, H.; Zhang, H. X.; Yao, H. L.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci.2019, 6, 1801733.

    Article  Google Scholar 

  28. Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev.2019, 119, 4357–4412.

    Article  CAS  Google Scholar 

  29. Zhang, L. M.; Xia, K.; Lu, Z. X.; Li, G. P.; Chen, J.; Deng, Y.; Li, S.; Zhou, F. M.; He, N. Y. Efficient and facile synthesis of gold nanorods with finely tunable plasmonic peaks from visible to near-ir range. Chem. Mater.2014, 26, 1794–1798.

    Article  CAS  Google Scholar 

  30. Zhang, L. M.; Xia, K.; Bai, Y. Y.; Lu, Z. X.; Tang, Y. J.; Deng, Y.; Chen, J.; Qian, W. P.; Shen, H.; Zhang, Z. J. et al. Synthesis of gold nanorods and their functionalization with bovine serum albumin for optical hyperthermia. J. Biomed. Nanotechnol.2014, 10, 1440–1449.

    Article  CAS  Google Scholar 

  31. Zhi, X.; Liu, Y. L.; Lin, L. N.; Yang, M.; Zhang, L. X.; Zhang, L.; Liu, Y. T.; Alfranca, G.; Ma, L. J.; Zhang, Q. et al. Oral pH sensitive GNS@ab nanoprobes for targeted therapy of Helicobacter pylori without disturbance gut microbiome. Nanomedicine2019, 20, 102019.

    Article  Google Scholar 

  32. Gao, Y. P.; Li, Y. S.; Chen, J. Z.; Zhu, S. J.; Liu, X. C.; Zhou, L. P.; Shi, P.; Niu, D. C.; Gu, J. L.; Shi, J. L. Multifunctional gold nanostar-based nanocomposite: Synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation. Biomaterials2015, 60, 31–41.

    Article  CAS  Google Scholar 

  33. Liang, S. J.; Li, C.; Zhang, C. L.; Chen, Y. S.; Xu, L.; Bao, C. C.; Wang, X. Y.; Liu, G.; Zhang, F. C.; Cui, D. X. CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells. Theranostics2015, 5, 970–984.

    Article  CAS  Google Scholar 

  34. Chen, H. Y.; Qiu, Q. M.; Sharif, S.; Ying, S. N.; Wang, Y. X.; Ying, Y. B. Solution-phase synthesis of platinum nanoparticle-decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzymes for biosensing applications. ACS Appl. Mater. Interfaces2018, 10, 24108–24115.

    Article  CAS  Google Scholar 

  35. Wu, J. J. X.; Qin, K.; Yuan, D.; Tan, J.; Qin, L.; Zhang, X. J.; Wei, H. Rational design of Au@Pt multibranched nanostructures as bifunctional nanozymes. ACS Appl. Mater. Interfaces2018, 10, 12954–12959.

    Article  CAS  Google Scholar 

  36. Zhang, A. M.; Pan, S. J.; Zhang, Y. H.; Chang, J.; Cheng, J.; Huang, Z. C.; Li, T. L.; Zhang, C. L.; de la Fuentea, J. M.; Zhang, Q. et al. Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics2019, 9, 3443–3458.

    Article  CAS  Google Scholar 

  37. Yayapao, O.; Thongtem, T.; Phuruangrat, A.; Thongtem, S. CTAB-assisted hydrothermal synthesis of tungsten oxide microflowers. J. Alloys Compd.2011, 509, 2294–2299.

    Article  CAS  Google Scholar 

  38. Rong, L. Q.; Yang, C.; Qian, Q. Y.; Xia, X. H. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta2007, 72, 819–824.

    Article  CAS  Google Scholar 

  39. Guo, M. Q.; Hong, H. S.; Tang, X. N.; Fang, H. D.; Xu, X. H. Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim. Acta2012, 63, 1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the support of the National Basic Research Program of China (Nos. 2017YFA0205301 and 2015CB931802), the National Natural Scientific Foundation of China (Nos. 81903169, 81803094, 81602184, 81822024, and 81571729), Shanghai Municipal Commission of Economy and Information Technology Fund (No. XC-ZXSJ-02-2016-05), the Medical Engineering Cross Project of Shanghai Jiao Tong university (Nos. YG2016ZD10 and YG2017Z D05), the Project of Thousand Youth Talents from China, and the National Key Research and Development Program of China (No. 2017YFC1200904). We also are grateful for the financial support of Shanghai Sailing Program (No. 19YF1422300), Sponsor from Startup Fund for Yongman Research at SJTU (No. 18X100040044) and Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument (No. 15DZ2252000) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Ma or Daxiang Cui.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Zhang, Q., Alfranca, G. et al. GSH-triggered sequential catalysis for tumor imaging and eradication based on star-like Au/Pt enzyme carrier system. Nano Res. 13, 160–172 (2020). https://doi.org/10.1007/s12274-019-2591-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2591-5

Keywords

Navigation