Skip to main content

Advertisement

Log in

The versatile Kv channels in the nervous system: actions beyond action potentials

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Voltage-gated K+ (Kv) channel opening repolarizes excitable cells by allowing K+ efflux. Over the last two decades, multiple Kv functions in the nervous system have been found to be unrelated to or beyond the immediate control of excitability, such as shaping action potential contours or regulation of inter-spike frequency. These functions include neuronal exocytosis and neurite formation, neuronal cell death, regulation of astrocyte Ca2+, glial cell and glioma proliferation. Some of these functions have been shown to be independent of K+ conduction, that is, they suggest the non-canonical functions of Kv channels. In this review, we focus on neuronal or glial plasmalemmal Kv channel functions which are unrelated to shaping action potentials or immediate control of excitability. Similar functions in other cell types will be discussed to some extent in appropriate contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2

Similar content being viewed by others

References

  1. Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  2. Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature 419(6902):35–42

    CAS  PubMed  Google Scholar 

  3. Choe S (2002) Potassium channel structures. Nat Rev Neurosci 3(2):115–121

    CAS  PubMed  Google Scholar 

  4. González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R (2012) K(+) channels: function-structural overview. Compr Physiol 2(3):2087–2149

    PubMed  Google Scholar 

  5. Jędrychowska J, Korzh V (2019) Kv2.1 voltage-gated potassium channels in developmental perspective. Dev Dyn. https://doi.org/10.1002/dvdy.114

    Article  PubMed  Google Scholar 

  6. Brown DA, Passmore GM (2009) Neural KCNQ (Kv7) channels. Br J Pharmacol 156(8):1185–1195

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng Y, Debska-Vielhaber G, Siemen D (2010) Interaction of mitochondrial potassium channels with the permeability transition pore. FEBS Lett 584:2005–2012

    CAS  PubMed  Google Scholar 

  8. Leanza L, Biasutto L, Manago A, Gulbins E, Zoratti M, Szabo I (2013) Intracellular ion channels and cancer. Front Physiol 4:227

    PubMed  PubMed Central  Google Scholar 

  9. Leanza L, Venturini E, Kadow S, Carpinteiro A, Gulbins E, Becker KA (2015) Targeting a mitochondrial potassium channel to fight cancer. Cell Calcium 58:131–138

    CAS  PubMed  Google Scholar 

  10. Leanza L, Zoratti M, Gulbins E, Szabo I (2014) Mitochondrial ion channels as oncological targets. Oncogene 33:5569–5581

    CAS  PubMed  Google Scholar 

  11. Singer-Lahat D, Sheinin A, Chikvashvili D, Tsuk S, Greitzer D, Friedrich R, Feinshreiber L, Ashery U, Benveniste M, Levitan ES, Lotan I (2007) K+ channel facilitation of exocytosis by dynamic interaction with syntaxin. J Neurosci. 27(7):1651–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Feinshreiber L, Singer-Lahat D, Ashery U, Lotan I (2009) Voltage-gated potassium channel as a facilitator of exocytosis. Ann N Y Acad Sci 1152:87–92

    CAS  PubMed  Google Scholar 

  13. Feinshreiber L, Singer-Lahat D, Friedrich R, Matti U, Sheinin A, Yizhar O, Nachman R, Chikvashvili D, Rettig J, Ashery U, Lotan I (2010) Non-conducting function of the Kv2.1 channel enables it to recruit vesicles for release in neuroendocrine and nerve cells. J Cell Sci 123(Pt 11):1940–1947

    CAS  PubMed  Google Scholar 

  14. Fu J, Dai X, Plummer G, Suzuki K, Bautista A, Githaka JM, Senior L, Jensen M, Greitzer-Antes D, Manning Fox JE, Gaisano HY, Newgard CB, Touret N, MacDonald PE (2017) Kv2.1 Clustering contributes to insulin exocytosis and rescues human β-cell dysfunction. Diabetes 66(7):1890–1900

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Greitzer-Antes D, Xie L, Qin T, Xie H, Zhu D, Dolai S, Liang T, Kang F, Hardy AB, He Y, Kang Y, Gaisano HY (2018) Kv2.1 clusters on β-cell plasma membrane act as reservoirs that replenish pools of newcomer insulin granule through their interaction with syntaxin-3. J Biol Chem 293(18):6893–6904

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6:837–845

    CAS  PubMed  Google Scholar 

  17. George J, Dravid SM, Prakash A, Xie J, Peterson J, Jabba SV (2009) Sodium channel activation augments NMDA receptor function and promotes neurite outgrowth in immature cerebrocortical neurons. J Neurosci 29:3288–3301

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu CB, Fu W, Xu X, Mattson MP (2009) Numb-mediated neurite outgrowth is isoform-dependent, and requires activation of voltage-dependent calcium channels. Neuroscience 161:403–412

    CAS  PubMed  PubMed Central  Google Scholar 

  19. McFarlane S, Pollock NS (2000) A role for voltage-gated potassium channels in the outgrowth of retinal axons in the developing visual system. J Neurosci 20(3):1020–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pollock NS, Ferguson SC, McFarlane S (2002) Expression of voltage-dependent potassium channels in the developing visual system of Xenopus laevis. J Comp Neurol 452(4):381–391

    CAS  PubMed  Google Scholar 

  21. Pollock NS, Atkinson-Leadbeater K, Johnston J, Larouche M, Wildering WC, McFarlane S (2005) Voltage-gated potassium channels regulate the response of retinal growth cones to axon extension and guidance cues. Eur J Neurosci 22(3):569–578

    CAS  PubMed  Google Scholar 

  22. Huang CY, Lien CC, Cheng CF, Yen TY, Chen CJ, Tsaur ML (2017) K+ channel Kv3.4 is essential for axon growth by limiting the influx of Ca2+ into growth cones. J Neurosci 37(17):4433–4449

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Leung YM, Huang CF, Chao CC, Lu DY, Kuo CS, Cheng TH, Chang LY, Chou CH (2011) Voltage-gated K+ channels play a role in cAMP-stimulated neuritogenesis in mouse neuro-2A cells. J Cell Physiol 226:1090–1098

    CAS  PubMed  Google Scholar 

  24. Munoz JP, Sanchez JR, Maccioni RB (2003) Regulation of p27 in the process of neuroblastoma N2A differentiation. J Cell Biochem 89:539–549

    CAS  PubMed  Google Scholar 

  25. Hargreaves AJ, Fowler MJ, Sachana M, Flaskos J, Bountouri M, Coutts IC, Coutts IC, Glynn P, Harris W, Graham MW (2006) Inhibition of neurite outgrowth in differentiating mouse N2a neuroblastoma cells by phenyl saligenin phosphate: effects on MAP kinase (ERK 1/2) activation, neurofilament heavy chain phosphorylation and neuropathy target esterase activity. Biochem Pharmacol 71:1240–1247

    CAS  PubMed  Google Scholar 

  26. Uboha NV, Flajolet M, Picciotto NAC, MR. (2007) A calcium- and calmodulin-dependent kinase Ialpha/microtubule affinity regulating kinase 2 signaling cascade mediates calcium-dependent neurite outgrowth. J Neurosci 27:4413–4423

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuja-Panula J, Kiiltomäki M, Yamashiro T, Rouhiainen A, Rauvala H (2003) AMIGO, a transmembrane protein implicated in axon tract development, defines a novel protein family with leucine-rich repeats. J Cell Biol 160(6):963–973

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Hor HH, Tang BL (2012) AMIGO is expressed in multiple brain cell types and may regulate dendritic growth and neuronal survival. J Cell Physiol 227(5):2217–2229

    CAS  PubMed  Google Scholar 

  29. Bishop HI, Cobb MM, Kirmiz M, Parajuli LK, Mandikian D, Philp AM, Melnik M, Kuja-Panula J, Rauvala H, Shigemoto R, Murray KD, Trimmer JS (2018) Kv2 ion channels determine the expression and localization of the associated AMIGO-1 cell adhesion molecule in adult brain neurons. Front Mol Neurosci 11:1

    PubMed  PubMed Central  Google Scholar 

  30. Ransom BR, Ransom CB (2012) Astrocytes: multitalented stars of the central nervous system. Methods Mol Biol 814:3–7

    CAS  PubMed  Google Scholar 

  31. Olsen M (2012) Examining potassium channel function in astrocytes. Methods Mol Biol 814:265–281

    CAS  PubMed  Google Scholar 

  32. Perea G, Araque A (2005) Glial calcium signaling and neuron–glia communication. Cell Calcium 38:375–382

    CAS  PubMed  Google Scholar 

  33. Halassa MM, Fellin T, Haydon PG (2009) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57:343–346

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Parpura V, Verkhratsky A (2012) The astrocyte excitability brief: from receptors to gliotransmission. Neurochem Int 61:610–621

    CAS  PubMed  Google Scholar 

  35. Bordey A, Sontheimer H (1999) Differential inhibition of glial K(+) currents by 4-AP. J Neurophysiol 82:3476–3487

    CAS  PubMed  Google Scholar 

  36. Wu KC, Kuo CS, Chao CC, Huang CC, Tu YK, Chan P, Leung YM (2015) Role of voltage-gated K(+) channels in regulating Ca(2+) entry in rat cortical astrocytes. J Physiol Sci 65(2):171–177

    CAS  PubMed  Google Scholar 

  37. Varga Z, Juhász T, Matta C, Fodor J, Katona É, Bartok A, Oláh T, Sebe A, Csernoch L, Panyi G, Zákány R (2011) Switch of voltage-gated K+ channel expression in the plasma membrane of chondrogenic cells affects cytosolic Ca2+-oscillations and cartilage formation. PLoS ONE 6:e27957

    CAS  PubMed  PubMed Central  Google Scholar 

  38. McCloskey C, Jones S, Amisten S, Snowden RT, Kaczmarek LK, Erlinge D, Goodall AH, Forsythe ID, Mahaut-Smith MP (2010) Kv1.3 is the exclusive voltage-gated K+ channel of platelets and megakaryocytes: roles in membrane potential, Ca2+ signalling and platelet count. J Physiol 588:1399–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kotecha SA, Schlichter LC (1999) A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation. J Neurosci 19(24):10680–10693

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Edwards L, Nashmi R, Jones O, Backx P, Ackerley C, Becker L, Fehlings MG (2002) Upregulation of Kv 1.4 protein and gene expression after chronic spinal cord injury. J Comp Neurol 443(2):154–167

    CAS  PubMed  Google Scholar 

  41. Pannasch U, Färber K, Nolte C, Blonski M, Yan Chiu S, Messing A, Kettenmann H (2006) The potassium channels Kv1.5 and Kv1.3 modulate distinct functions of microglia. Mol Cell Neurosci 33(4):401–411

    CAS  PubMed  Google Scholar 

  42. Cidad P, Jiménez-Pérez L, García-Arribas D, Miguel-Velado E, Tajada S, Ruiz-McDavitt C, López-López JR, Pérez-García MT (2012) Kv1.3 channels can modulate cell proliferation during phenotypic switch by an ion-flux independent mechanism. Arterioscler Thromb Vasc Biol 32(5):1299–1307

    CAS  PubMed  Google Scholar 

  43. Jiménez-Pérez L, Cidad P, Álvarez-Miguel I, Santos-Hipólito A, Torres-Merino R, Alonso E, de la Fuente MÁ, López-López JR, Pérez-García MT (2016) Molecular determinants of Kv1.3 potassium channels-induced proliferation. J Biol Chem 291(7):3569–3580

    PubMed  Google Scholar 

  44. Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278(5335):114–117

    CAS  PubMed  Google Scholar 

  45. Yu SP, Farhangrazi ZS, Ying HS, Yeh CH, Choi DW (1998) Enhancement of outward potassium current may participate in beta-amyloid peptide-induced cortical neuronal death. Neurobiol Dis 5(2):81–88

    CAS  PubMed  Google Scholar 

  46. Pal SK, Takimoto K, Aizenman E, Levitan ES (2006) Apoptotic surface delivery of K+ channels. Cell Death Differen 13(4):661–667

    CAS  Google Scholar 

  47. Jiao S, Liu Z, Ren WH, Ding Y, Zhang YQ, Zhang ZH, Mei YA (2007) cAMP/protein kinase A signalling pathway protects against neuronal apoptosis and is associated with modulation of Kv2.1 in cerebellar granule cells. J Neurochem 100(4):979–991

    CAS  PubMed  Google Scholar 

  48. Redman PT, He K, Hartnett KA, Jefferson BS, Hu L, Rosenberg PA, Levitan ES, Aizenman E (2007) Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc Natl Acad Sci USA 104(9):3568–3573

    CAS  PubMed  Google Scholar 

  49. Szabò I, Zoratti M, Gulbins E (2010) Contribution of voltage-gated potassium channels to the regulation of apoptosis. FEBS Lett 584(10):2049–2056

    PubMed  Google Scholar 

  50. Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70(4):363–386

    CAS  PubMed  Google Scholar 

  51. Ledbetter ML, Lubin M (1977) Control of protein synthesis in human fibroblasts by intracellular potassium. Exp Cell Res 105(2):223–236

    CAS  PubMed  Google Scholar 

  52. Albano J, Bhoola KD, Kingsley G (1977) The control of cyclic GMP by calcium, ionophore A23187, potassium and acetycholine in enzyme-secreting pancreatic slices [proceedings]. J Physiol 267(1):35–36

    Google Scholar 

  53. Hughes FM Jr, Cidlowski JA (1999) Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul 39:157–171

    CAS  PubMed  Google Scholar 

  54. Hughes FM Jr, Bortner CD, Purdy GD, Cidlowski JA (1997) Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272(48):30567–30576

    CAS  PubMed  Google Scholar 

  55. Liu D, Slevin JR, Lu C, Chan SL, Hansson M, Elmér E, Mattson MP (2003) Involvement of mitochondrial K+ release and cellular efflux in ischemic and apoptotic neuronal death. J Neurochem 86(4):966–979

    CAS  PubMed  Google Scholar 

  56. Redman PT, Hartnett KA, Aras MA, Levitan ES, Aizenman E (2009) Regulation of apoptotic potassium currents by coordinated zinc-dependent signalling. J Physiol 587:4393–4404

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu CL, Zeng XM, Zhou MH, Shi YT, Cao H, Mei YA (2008) Kv 1.1 is associated with neuronal apoptosis and modulated by protein kinase C in the rat cerebellar granule cell. J Neurochem 106(3):1125–1137

    CAS  PubMed  Google Scholar 

  58. Koeberle PD, Wang Y, Schlichter LC (2009) Kv1.1 and Kv1.3 channels contribute to the degeneration of retinal ganglion cells after optic nerve transection in vivo. Cell Death Differen 17(1):134–144

    Google Scholar 

  59. Pannaccione A, Boscia F, Scorziello A, Adornetto A, Castaldo P, Sirabella R, Taglialatela M, Di Renzo GF, Annunziato L (2007) Up-regulation and increased activity of KV3.4 channels and their accessory subunit MinK-related peptide 2 induced by amyloid peptide are involved in apoptotic neuronal death. Mol Pharmacol 72(3):665–673

    CAS  PubMed  Google Scholar 

  60. Pieri M, Amadoro G, Carunchio I, Ciotti MT, Quaresima S, Florenzano F, Calissano P, Possenti R, Zona C, Severini C (2010) SP protects cerebellar granule cells against beta-amyloid-induced apoptosis by down-regulation and reduced activity of Kv4 potassium channels. Neuropharmacology 58(1):268–276

    CAS  PubMed  Google Scholar 

  61. Liu H, Liu J, Xu E, Tu G, Guo M, Liang S, Xiong H (2017) Human immunodeficiency virus protein Tat induces oligodendrocyte injury by enhancing outward K+ current conducted by KV1.3. Neurobiol Dis 97(Pt A):1–10

    PubMed  Google Scholar 

  62. Fordyce CB, Jagasia R, Zhu X, Schlichter LC (2005) Microglia Kv1.3 channels contribute to their ability to kill neurons. J Neurosci 25(31):7139–7149

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu J, Xu C, Chen L, Xu P, Xiong H (2012) Involvement of Kv1.3 and p38 MAPK signaling in HIV-1 glycoprotein 120-induced microglia neurotoxicity. Cell Death Dis 3:e254

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu J, Xu P, Collins C, Liu H, Zhang J, Keblesh JP, Xiong H (2013) HIV-1 Tat protein increases microglial outward K(+) current and resultant neurotoxic activity. PLoS ONE 8(5):e64904

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ru Q, Tian X, Wu YX, Wu RH, Pi MS, Li CY (2014) Voltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human glioma. Oncol Rep 31(2):842–848

    CAS  PubMed  Google Scholar 

  66. Arvind S, Arivazhagan A, Santosh V, Chandramouli BA (2012) Differential expression of a novel voltage gated potassium channel–Kv 1.5 in astrocytomas and its impact on prognosis in glioblastoma. Br J Neurosurg 26(1):16–20

    CAS  PubMed  Google Scholar 

  67. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J (2016) Silencing of hERG1 gene inhibits proliferation and invasion, and induces apoptosis in human osteosarcoma cells by targeting the NF-κB pathway. J Cancer 7(6):746–757

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee JH, Park JW, Byun JK, Kim HK, Ryu PD, Lee SY, Kim DY (2015) Silencing of voltage-gated potassium channel KV9.3 inhibits proliferation in human colon and lung carcinoma cells. Oncotarget 6(10):8132–8143

    PubMed  PubMed Central  Google Scholar 

  69. Serrano-Novillo C, Capera J, Colomer-Molera M, Condom E, Ferreres JC, Felipe A (2019) Implication of voltage-gated potassium channels in neoplastic cell proliferation. Cancers (Basel) 11(3):E287

    Google Scholar 

  70. Bielanska J, Hernández-Losa J, Moline T, Somoza R, Ramón Y, Cajal S, Condom E, Ferreres JC, Felipe A (2012) Increased voltage-dependent K+ channel Kv1.3 and Kv1.5 expression correlates with leiomyosarcoma aggressiveness. Oncol Lett 4(2):227–230

    PubMed  PubMed Central  Google Scholar 

  71. Song MS, Park SM, Park JS, Byun JH, Jin HJ, Seo SH, Ryu PD, Lee SY (2018) Kv3.1 and Kv3.4, are involved in cancer cell migration and invasion. Int J Mol Sci 19(4):E1061

    PubMed  Google Scholar 

  72. Hammadi M, Chopin V, Matifat F (2012) Human ether à-gogo K(+) channel 1 (hEag1) regulates MDA-MB-231 breast cancer cell migration through Orai1-dependent calcium entry. J Cell Physiol 227(12):3837–3846

    CAS  PubMed  Google Scholar 

  73. Chow LW, Cheng KS, Wong KL, Leung YM (2018) Voltage-gated K+ channels promote BT-474 breast cancer cell migration. Chin J Cancer Res 30(6):613–622

    PubMed  PubMed Central  Google Scholar 

  74. Weaver AK, Bomben VC, Sontheimer H (2006) Expression and function of calcium-activated potassium channels in human glioma cells. Glia 54(3):223–233

    PubMed  PubMed Central  Google Scholar 

  75. Dalessandro G, Catalano M, Sciaccaluga M, Chece G, Cipriani R, Rosito M, Grimaldi A, Lauro C, Cantore G, Santoro A, Fioretti B, Franciolini F, Wulff H, Limatola C (2013) KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo. Cell Death Dis 4:e773

    CAS  Google Scholar 

  76. Huang X, Jan LY (2014) Targeting potassium channels in cancer. J Cell Biol 206(2):151–162

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Stroka KM, Jiang H, Chen SH, Tong Z, Wirtz D, Sun SX, Konstantopoulos K (2014) Water permeation drives tumor cell migration in confined microenvironments. Cell 157(3):611–623

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Abbott GW, Tai KK, Neverisky DL, Hansler A, Hu Z, Roepke TK, Lerner DJ, Chen Q, Liu L, Zupan B, Toth M, Haynes R, Huang X, Demirbas D, Buccafusca R, Gross SS, Kanda VA, Berry GT (2014) KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability. Sci Signal 7(315):22

    Google Scholar 

  79. Bartolomé-Martín D, Ibáñez I, Piniella D, Martínez-Blanco E, Pelaz SG, Zafra F (2019) Identification of potassium channel proteins Kv7.2/7.3 as common partners of the dopamine and glutamate transporters DAT and GLT-1. Neuropharmacology 161:107568

    PubMed  Google Scholar 

  80. Baronas VA, Yang RY, Morales LC, Sipione S, Kurata HT (2018) Slc7a5 regulates Kv1.2 channels and modifies functional outcomes of epilepsy-linked channel mutations. Nat Commun 9(1):4417

    PubMed  PubMed Central  Google Scholar 

  81. Manville RW, Abbott GW (2019) Teamwork: Ion channels and transporters join forces in the brain. Neuropharmacology 161:107601

    PubMed  Google Scholar 

  82. Deutsch E, Weigel AV, Akin EJ, Fox P, Hansen G, Haberkorn CJ, Loftus R, Krapf D, Tamkun MM (2012) Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane. Mol Biol Cell 23(15):2917–2929

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Black JA, Waxman SG (2013) Noncanonical roles of voltage-gated sodium channels. Neuron 80(2):280–291

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.M.L. would like to thank China Medical University, Taiwan, for providing fundings (CMU107-S-01). L.W.C.C would like to thank the Macau Science and Technology Development Fund (FUNDO PARA O DESENVOLVIMENTO DAS CIÊNCIAS E DA TECNOLOGIA) for support (Grant number 002/2015/A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuk- Man Leung.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Humans and/or animals participants

This is a review article; no animals or humans were experimented in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, L.W.C., Leung, Y.M. The versatile Kv channels in the nervous system: actions beyond action potentials. Cell. Mol. Life Sci. 77, 2473–2482 (2020). https://doi.org/10.1007/s00018-019-03415-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03415-8

Keywords

Navigation