Skip to main content

Advertisement

Log in

Communication between human macrophages and epithelial cancer cell lines dictates lipid mediator biosynthesis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In tumors, cancer cells coexist and communicate with macrophages that can promote tumorigenesis via pro-inflammatory signals. Lipid mediators (LMs), produced mainly by cyclooxygenases (COXs) or lipoxygenases (LOs), display a variety of biological functions with advantageous or deleterious consequences for tumors. Here, we investigated how the communication between human monocyte-derived M2-like macrophages (MDM) and cancer cells affects LM biosynthesis using LM metabololipidomics. Coculture of human MDM with human A549 epithelial lung carcinoma cells, separated by a semipermeable membrane, increased LM formation by MDM upon subsequent activation. Strongest effects were observed on 5-LO-derived LM. While expression of the 5-LO pathway was not altered, p38 MAPK and the downstream MAPKAPK-2 that phosphorylates and stimulates 5-LO were more susceptible for activation in MDM upon precedent coculture with A549 cells as compared to monocultures. Accordingly, the p38 MAPK inhibitor Skepinone-L selectively prevented this increase in 5-LO product formation. Also, 5-LO-/15-LO-derived LM including lipoxin A4, resolvin D2 and D5 were elevated after coculture with A549 cells, correlating to increased 15-LO-1 protein levels. In contrast to cancer cells, coincubation with non-transformed human umbilical vein endothelial cells (HUVEC) did not affect LM production in MDM. Vice versa, MDM increased COX-2 protein expression and COX-mediated prostanoid formation in cancer cells. Conclusively, our data reveal that the communication between MDM and cancer cells can strikingly modulate the biosynthetic capacities to produce bioactive LM with potential relevance for tumor biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

COX:

Cyclooxygenase

cPLA2-α:

Cytosolic phospholipase A2

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

ERK-1/2:

Extracellular signal-regulated protein kinase-1/2

FCS:

Fetal calf serum

FLAP:

5-Lipoxygenase-activating protein

HETE:

Hydroxyeicosatetraenoic acid

HUVEC:

Human umbilical vein endothelial cells

LM:

Lipid mediator

LO:

Lipoxygenase

LT:

Leukotriene

MAPK:

Mitogen-activated protein kinase

MK-2:

MAPKAPK-2, mitogen-activated protein kinase-activated protein kinase-2

MDM:

Monocyte-derived macrophages

NSAID:

Non-steroidal anti-inflammatory drugs

PG:

Prostaglandin

SPM:

Specialized pro-resolving mediators

TAM:

Tumor-associated macrophages

TME:

Tumor microenvironment

UPLC-MS–MS:

Ultra performance liquid chromatography-tandem mass spectrometry

References

  1. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596

    CAS  Google Scholar 

  2. Biswas SK, Allavena P, Mantovani A (2013) Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol 35:585–600

    CAS  Google Scholar 

  3. Goswami KK, Ghosh T, Ghosh S, Sarkar M, Bose A, Baral R (2017) Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell Immunol 316:1–10

    CAS  Google Scholar 

  4. Prenen H, Mazzone M (2019) Tumor-associated macrophages: a short compendium. Cell Mol Life Sci 76:1447–1458

    CAS  Google Scholar 

  5. Allavena P, Sica A, Garlanda C, Mantovani A (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161

    CAS  Google Scholar 

  6. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    CAS  Google Scholar 

  7. Murakami M (2011) Lipid mediators in life science. Exp Anim 60:7–20

    CAS  Google Scholar 

  8. Calder PC (2006) Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids 75:197–202

    CAS  Google Scholar 

  9. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    CAS  Google Scholar 

  10. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101

    CAS  Google Scholar 

  11. Serhan CN, Levy BD (2018) Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest 128:2657–2669

    Google Scholar 

  12. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  Google Scholar 

  13. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    CAS  Google Scholar 

  14. Crusz SM, Balkwill FR (2015) Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 12:584–596

    CAS  Google Scholar 

  15. Greene ER, Huang S, Serhan CN, Panigrahy D (2011) Regulation of inflammation in cancer by eicosanoids. Prostaglandin Other Lipid Mediat 96:27–36

    CAS  Google Scholar 

  16. Nie D, Honn KV (2002) Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cell Mol Life Sci 59:799–807

    CAS  Google Scholar 

  17. Wang D, Dubois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10:181–193

    CAS  Google Scholar 

  18. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30:377–386

    CAS  Google Scholar 

  19. Kim W, Son B, Lee S, Do H, Youn B (2018) Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer Metastasis Rev 37:213–225

    CAS  Google Scholar 

  20. Wculek SK, Malanchi I (2015) Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528:413–417

    CAS  Google Scholar 

  21. Sulciner ML, Serhan CN, Gilligan MM, Mudge DK, Chang J, Gartung A, Lehner KA, Bielenberg DR, Schmidt B, Dalli J, Greene ER, Gus-Brautbar Y, Piwowarski J, Mammoto T, Zurakowski D, Perretti M, Sukhatme VP, Kaipainen A, Kieran MW, Huang S, Panigrahy D (2018) Resolvins suppress tumor growth and enhance cancer therapy. J Exp Med 215:115–140

    CAS  Google Scholar 

  22. Gilligan MM, Gartung A, Sulciner ML, Norris PC, Sukhatme VP, Bielenberg DR, Huang S, Kieran MW, Serhan CN, Panigrahy D (2019) Aspirin-triggered proresolving mediators stimulate resolution in cancer. Proc Natl Acad Sci USA 16:6292–6297

    Google Scholar 

  23. Moore GY, Pidgeon GP (2017) Cross-talk between cancer cells and the tumour microenvironment: the role of the 5-lipoxygenase pathway. Int J Mol Sci 18:E236

    Google Scholar 

  24. Weigert A, Strack E, Snodgrass RG, Brune B (2018) mPGES-1 and ALOX5/-15 in tumor-associated macrophages. Cancer Metastasis Rev 37:317–334

    CAS  Google Scholar 

  25. Capra V, Rovati GE, Mangano P, Buccellati C, Murphy RC, Sala A (2015) Transcellular biosynthesis of eicosanoid lipid mediators. Biochim Biophys Acta 1851:377–382

    CAS  Google Scholar 

  26. Raasch M, Rennert K, Jahn T, Peters S, Henkel T, Huber O, Schulz I, Becker H, Lorkowski S, Funke H, Mosig A (2015) Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions. Biofabrication 7:015013

    Google Scholar 

  27. Werz O, Gerstmeier J, Libreros S, De la Rosa X, Werner M, Norris PC, Chiang N, Serhan CN (2018) Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. Nat Commun 9:59

    Google Scholar 

  28. Werner M, Jordan PM, Romp E, Czapka A, Rao Z, Kretzer C, Koeberle A, Garscha U, Pace S, Claesson HE, Serhan CN, Werz O, Gerstmeier J (2019) Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB J 33:6140–6153

    CAS  Google Scholar 

  29. Pace S, Pergola C, Dehm F, Rossi A, Gerstmeier J, Troisi F, Pein H, Schaible AM, Weinigel C, Rummler S, Northoff H, Laufer S, Maier TJ, Radmark O, Samuelsson B, Koeberle A, Sautebin L, Werz O (2017) Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J Clin Invest 127:3167–3176

    Google Scholar 

  30. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    CAS  Google Scholar 

  31. Li J, Diao B, Guo S, Huang X, Yang C, Feng Z, Yan W, Ning Q, Zheng L, Chen Y, Wu Y (2017) VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. Nat Commun 8:1322

    Google Scholar 

  32. Dalli J, Serhan CN (2012) Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120:e60–72

    CAS  Google Scholar 

  33. Araujo P, Belghit I, Aarsaether N, Espe M, Lucena E, Holen E (2019) The effect of omega-3 and omega-6 polyunsaturated fatty acids on the production of cyclooxygenase and lipoxygenase metabolites by human umbilical vein endothelial cells. Nutrients 11:E966

    Google Scholar 

  34. Mosca M, Polentarutti N, Mangano G, Apicella C, Doni A, Mancini F, De Bortoli M, Coletta I, Polenzani L, Santoni G, Sironi M, Vecchi A, Mantovani A (2007) Regulation of the microsomal prostaglandin E synthase-1 in polarized mononuclear phagocytes and its constitutive expression in neutrophils. J Leukoc Biol 82:320–326

    CAS  Google Scholar 

  35. Werz O, Steinhilber D (2005) Development of 5-lipoxygenase inhibitors—lessons from cellular enzyme regulation. Biochem Pharmacol 70:327–333

    CAS  Google Scholar 

  36. Radmark O, Werz O, Steinhilber D, Samuelsson B (2015) 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta 1851:331–339

    Google Scholar 

  37. Koeberle SC, Romir J, Fischer S, Koeberle A, Schattel V, Albrecht W, Grutter C, Werz O, Rauh D, Stehle T, Laufer SA (2011) Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor. Nat Chem Biol 8:141–143

    Google Scholar 

  38. Werz O, Burkert E, Samuelsson B, Radmark O, Steinhilber D (2002) Activation of 5-lipoxygenase by cell stress is calcium independent in human polymorphonuclear leukocytes. Blood 99:1044–1052

    CAS  Google Scholar 

  39. Werz O, Klemm J, Samuelsson B, Radmark O (2000) 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. Proc Natl Acad Sci USA 97:5261–5266

    CAS  Google Scholar 

  40. Mazaleuskaya LL, Lawson JA, Li X, Grant G, Mesaros C, Grosser T, Blair IA, Ricciotti E, FitzGerald GA (2016) A broad-spectrum lipidomics screen of antiinflammatory drug combinations in human blood. JCI Insight 1:e87031

    Google Scholar 

  41. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416

    CAS  Google Scholar 

  42. Poczobutt JM, Gijon M, Amin J, Hanson D, Li H, Walker D, Weiser-Evans M, Lu X, Murphy RC, Nemenoff RA (2013) Eicosanoid profiling in an orthotopic model of lung cancer progression by mass spectrometry demonstrates selective production of leukotrienes by inflammatory cells of the microenvironment. PLoS ONE 8:e79633

    CAS  Google Scholar 

  43. Hong SH, Avis I, Vos MD, Martinez A, Treston AM, Mulshine JL (1999) Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Res 59:2223–2228

    CAS  Google Scholar 

  44. Luo M, Lee S, Brock TG (2003) Leukotriene synthesis by epithelial cells. Histol Histopathol 18:587–595

    CAS  Google Scholar 

  45. Lukic A, Wahlund CJE, Gomez C, Brodin D, Samuelsson B, Wheelock CE, Gabrielsson S, Radmark O (2019) Exosomes and cells from lung cancer pleural exudates transform LTC4 to LTD4, promoting cell migration and survival via CysLT1. Cancer Lett 444:1–8

    CAS  Google Scholar 

  46. Nosaka T, Baba T, Tanabe Y, Sasaki S, Nishimura T, Imamura Y, Yurino H, Hashimoto S, Arita M, Nakamoto Y, Mukaida N (2018) Alveolar macrophages drive hepatocellular carcinoma lung metastasis by generating leukotriene B4. J Immunol 200:1839–1852

    CAS  Google Scholar 

  47. Cheon EC, Khazaie K, Khan MW, Strouch MJ, Krantz SB, Phillips J, Blatner NR, Hix LM, Zhang M, Dennis KL, Salabat MR, Heiferman M, Grippo PJ, Munshi HG, Gounaris E, Bentrem DJ (2011) Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APCDelta468 mice. Cancer Res 71:1627–1636

    CAS  Google Scholar 

  48. Wen Z, Liu H, Li M, Li B, Gao W, Shao Q, Fan B, Zhao F, Wang Q, Xie Q, Yang Y, Yu J, Qu X (2015) Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene 34:1241–1252

    CAS  Google Scholar 

  49. Poczobutt JM, Nguyen TT, Hanson D, Li H, Sippel TR, Weiser-Evans MC, Gijon M, Murphy RC, Nemenoff RA (2016) Deletion of 5-lipoxygenase in the tumor microenvironment promotes lung cancer progression and metastasis through regulating T cell recruitment. J Immunol 196:891–901

    CAS  Google Scholar 

  50. Ringleb J, Strack E, Angioni C, Geisslinger G, Steinhilber D, Weigert A, Brune B (2018) Apoptotic cancer cells suppress 5-lipoxygenase in tumor-associated macrophages. J Immunol 200:857–868

    CAS  Google Scholar 

  51. Werz O, Szellas D, Steinhilber D, Radmark O (2002) Arachidonic acid promotes phosphorylation of 5-lipoxygenase at Ser-271 by MAPK-activated protein kinase 2 (MK2). J Biol Chem 277:14793–14800

    CAS  Google Scholar 

  52. Werz O, Burkert E, Fischer L, Szellas D, Dishart D, Samuelsson B, Radmark O, Steinhilber D (2002) Extracellular signal-regulated kinases phosphorylate 5-lipoxygenase and stimulate 5-lipoxygenase product formation in leukocytes. FASEB J 16:1441–1443

    CAS  Google Scholar 

  53. Leslie CC (2015) Cytosolic phospholipase A(2): physiological function and role in disease. J Lipid Res 56:1386–1402

    CAS  Google Scholar 

  54. Gijon MA, Spencer DM, Siddiqi AR, Bonventre JV, Leslie CC (2000) Cytosolic phospholipase A2 is required for macrophage arachidonic acid release by agonists that do and do not mobilize calcium. Novel role of mitogen-activated protein kinase pathways in cytosolic phospholipase A2 regulation. J Biol Chem 275:20146–20156

    CAS  Google Scholar 

  55. Giannattasio G, Lai Y, Granata F, Mounier CM, Nallan L, Oslund R, Leslie CC, Marone G, Lambeau G, Gelb MH, Triggiani M (2009) Expression of phospholipases A2 in primary human lung macrophages: role of cytosolic phospholipase A2-alpha in arachidonic acid release and platelet activating factor synthesis. Biochim Biophys Acta 1791:92–102

    CAS  Google Scholar 

  56. Sulciner ML, Gartung A, Gilligan MM, Serhan CN, Panigrahy D (2018) Targeting lipid mediators in cancer biology. Cancer Metastasis Rev 37:557–572

    CAS  Google Scholar 

  57. Tian R, Zuo X, Jaoude J, Mao F, Colby J, Shureiqi I (2017) ALOX15 as a suppressor of inflammation and cancer: lost in the link. Prostaglandin Other Lipid Mediat 132:77–83

    CAS  Google Scholar 

  58. Daurkin I, Eruslanov E, Stoffs T, Perrin GQ, Algood C, Gilbert SM, Rosser CJ, Su LM, Vieweg J, Kusmartsev S (2011) Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res 71:6400–6409

    CAS  Google Scholar 

  59. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K (2019) Cyclooxygenase-2 in cancer: a review. J Cell Physiol 234:5683–5699

    CAS  Google Scholar 

  60. Muller-Decker K (2011) Cyclooxygenase-dependent signaling is causally linked to non-melanoma skin carcinogenesis: pharmacological, genetic, and clinical evidence. Cancer Metastasis Rev 30:343–361

    Google Scholar 

  61. Xia D, Wang D, Kim SH, Katoh H, DuBois RN (2012) Prostaglandin E2 promotes intestinal tumor growth via DNA methylation. Nat Med 18:224–226

    CAS  Google Scholar 

  62. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417:182–187

    CAS  Google Scholar 

  63. Soki FN, Koh AJ, Jones JD, Kim YW, Dai J, Keller ET, Pienta KJ, Atabai K, Roca H, McCauley LK (2014) Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. J Biol Chem 289:24560–24572

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SFB1127 ChemBioSys and SFB1278 Polytarget). J.G. received a Carl Zeiss stipend.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simona Pace or Oliver Werz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, M., Pace, S., Czapka, A. et al. Communication between human macrophages and epithelial cancer cell lines dictates lipid mediator biosynthesis. Cell. Mol. Life Sci. 77, 4365–4378 (2020). https://doi.org/10.1007/s00018-019-03413-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03413-w

Keywords

Navigation