Skip to main content
Log in

Zinc Addition Influence on the Properties of Pd/Sibunit Catalyst in Selective Acetylene Hydrogenation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A series of bimetallic Pd–Zn catalysts supported on the carbon material Sibunit was synthesized for selective hydrogenation of acetylene. XRD, XPS, XAFS and TEM data revealed that the structure and dispersion of bimetallic particles in Pd–Zn/Sibunit samples depend on the molar ratio Pd:Zn. The active component of the Pd–Zn(1:0.25)/Sibunit sample is a substitutional solid solution. In the catalysts with Pd:Zn ≤ 1, the interaction proceeds more completely with the transformation of FCC lattice of the solid solution into the tetragonal structure of intermetallic phase with the composition close to PdZn, whereas an excess of zinc forms the individual ZnO phase. It was found that an increase in the zinc content in Pd–Zn/Sibunit catalysts from Pd:Zn = 1:0 to 1:4 leads to dispergation of the deposited mono- and bimetallic particles from dav = 7.2 to 2.0 nm. The formation of the PdZn intermetallic compound with increasing the zinc content from Pd:Zn = 1:0 to 1:1 is accompanied by a gradual increase in selectivity to ethylene from 42% for Pd/Sibunit to 67% for Pd–Zn(1:1)/Sibunit (the reaction temperature is 95 °C), and also by a decrease in activity. The introduction of a zinc excess (Pd:Zn < 1), on the contrary, decreases the hydrogenation selectivity to ~ 62%, presumably owing to a high dispersion of bimetallic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armbrüster M, Schlögl R, Grin Y (2014) Intermetallic compounds in heterogeneous catalysis—a quickly developing field. Sci Technol Adv Mater 15:034803

    Article  Google Scholar 

  2. Mashkovsky IS, Markov PV, Bragina GO et al (2018) PdZn/α-Al2O3 catalyst for liquid-phase alkyne hydrogenation: effect of the solid-state alloy transformation into intermetallics. Mendeleev Commun 28:152–154. https://doi.org/10.1016/j.mencom.2018.03.014

    Article  CAS  Google Scholar 

  3. Nikolaev SA, Zanaveskin LN, Smirnov VV et al (2009) Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects. Rus Chem Rev 78:231–247. https://doi.org/10.1070/RC2009v078n03ABEH003893

    Article  CAS  Google Scholar 

  4. Conant T, Karim AM, Lebarbier V et al (2008) Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. J Catal 257:64–70. https://doi.org/10.1016/j.jcat.2008.04.018

    Article  CAS  Google Scholar 

  5. Pei GX, Liu XY, Wang A et al (2015) Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal 5:3717–3725. https://doi.org/10.1021/acscatal.5b00700

    Article  CAS  Google Scholar 

  6. Childers DJ, Schweitzer NM, Shahari SMK et al (2014) Modifying structure-sensitive reactions by addition of Zn to Pd. J Catal 318:75–84. https://doi.org/10.1016/j.jcat.2014.07.016

    Article  CAS  Google Scholar 

  7. Bollmann L, Ratts JL, Joshi AM et al (2008) Effect of Zn addition on the water-gas shift reaction over supported palladium catalysts. J Catal 257:43–54. https://doi.org/10.1016/j.jcat.2008.04.005

    Article  CAS  Google Scholar 

  8. Zhou H, Yang X, Li L et al (2016) PdZn intermetallic nanostructure with Pd–Zn–Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal 6:1054–1061. https://doi.org/10.1021/acscatal.5b01933

    Article  CAS  Google Scholar 

  9. Armbrüster M, Behrens M, Föttinger K et al (2013) The intermetallic compound ZnPd and its role in methanol steam reforming. Catal Rev 55:289–367. https://doi.org/10.1080/01614940.2013.796192

    Article  CAS  Google Scholar 

  10. Suwa Y, Ito S, Kameoka S et al (2004) Comparative study between Zn–Pd/C and Pd/ZnO catalysts for steam reforming of methanol. Appl Catal A 267:9–16. https://doi.org/10.1016/J.APCATA.2004.02.016

    Article  CAS  Google Scholar 

  11. Tew MW, Emerich H, van Bokhoven JA (2011) Formation and characterization of PdZn alloy: a very selective catalyst for alkyne semihydrogenation. J Phys Chem C 115:8457–8465. https://doi.org/10.1021/jp1103164

    Article  CAS  Google Scholar 

  12. Moretti E, Lenarda M, Storaro L et al (2007) One-step incorporation of Pd–Zn catalytic sites into organized mesoporous alumina for use in the oxidative steam reforming of methanol. J Colloid Interface Sci 306:89–95. https://doi.org/10.1016/J.JCIS.2006.10.017

    Article  PubMed  CAS  Google Scholar 

  13. Xu J, Su X, Liu X et al (2016) Methanol synthesis from CO2 and H2 over Pd/ZnO/Al2O3: catalyst structure dependence of methanol selectivity. Appl Catal A 514:51–59. https://doi.org/10.1016/J.APCATA.2016.01.006

    Article  CAS  Google Scholar 

  14. Glyzdova DV, Khramov EV, Smirnova NS et al (2019) Study on the active phase formation of Pd–Zn/Sibunit catalysts during the thermal treatment in hydrogen. Appl Surf Sci 483:730–741. https://doi.org/10.1016/J.APSUSC.2019.03.215

    Article  CAS  Google Scholar 

  15. Wang Z, Yang L, Zhang R et al (2016) Selective hydrogenation of phenylacetylene over bimetallic Pd–Cu/Al2O3 and Pd–Zn/Al2O3 catalysts. Catal Today 264:37–43. https://doi.org/10.1016/J.CATTOD.2015.08.018

    Article  CAS  Google Scholar 

  16. Nowicka E, Althahban SM, Luo Y et al (2018) Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. Catal Sci Technol 8:5848–5857. https://doi.org/10.1039/c8cy01100a

    Article  CAS  Google Scholar 

  17. Kast P, Friedrich M, Girgsdies F et al (2016) Strong metal-support interaction and alloying in Pd/ZnO catalysts for CO oxidation. Catal Today 260:21–31. https://doi.org/10.1016/J.CATTOD.2015.05.021

    Article  CAS  Google Scholar 

  18. Iwasa N, Mayanagi T, Nomura W et al (2003) Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol. Appl Catal A 248:153–160. https://doi.org/10.1016/S0926-860X(03)00184-4

    Article  CAS  Google Scholar 

  19. Komatsu T, Inaba K, Uezono T et al (2003) Nano-size particles of palladium intermetallic compounds as catalysts for oxidative acetoxylation. Appl Catal A 251:315–326. https://doi.org/10.1016/S0926-860X(03)00380-6

    Article  CAS  Google Scholar 

  20. Iwasa N, Yoshikawa M, Arai M (2002) Selective hydrogenation of acetonitrile to ethylamine using palladium-based alloy catalysts. Phys Chem Chem Phys 4:5414–5420. https://doi.org/10.1039/b206916b

    Article  CAS  Google Scholar 

  21. Okhlopkova LB, Cherepanova SV, Prosvirin IP et al (2018) Semihydrogenation of 2-methyl-3-butyn-2-ol on Pd–Zn nanoalloys: effect of composition and heterogenization. Appl Catal A 549:245–253. https://doi.org/10.1016/j.apcata.2017.10.005

    Article  CAS  Google Scholar 

  22. Shitova NB, Shlyapin DA, Afonasenko TN et al (2011) Liquid-phase hydrogenation of acetylene on the Pd/Sibunit catalyst in the presence of carbon monoxide. Kinet Catal 52:251–257. https://doi.org/10.1134/S0023158411020170

    Article  CAS  Google Scholar 

  23. Gurrath M, Kuretzky T, Boehm HP et al (2000) Palladium catalysts on activated carbon supports: influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon 38:1241–1255. https://doi.org/10.1016/S0008-6223(00)00026-9

    Article  CAS  Google Scholar 

  24. Chinayon S, Mekasuwandumrong O, Praserthdam P, Panpranot J (2008) Selective hydrogenation of acetylene over Pd catalysts supported on nanocrystalline α-Al2O3 and Zn-modified α-Al2O3. Catal Commun 9:2297–2302. https://doi.org/10.1016/J.CATCOM.2008.03.032

    Article  CAS  Google Scholar 

  25. Yermakov YI, Surovikin VF, Plaksin GV et al (1987) New carbon material as support for catalysts. React Kinet Catal Lett 33:435–440. https://doi.org/10.1007/BF02128102

    Article  CAS  Google Scholar 

  26. Glyzdova DV, Vedyagin AA, Tsapina AM et al (2018) A study on structural features of bimetallic Pd-M/C (M: Zn, Ga, Ag) catalysts for liquid-phase selective hydrogenation of acetylene. Appl Catal A 563:18–27. https://doi.org/10.1016/j.apcata.2018.06.029

    Article  CAS  Google Scholar 

  27. Wowsnick G, Teschner D, Armbrüster M et al (2014) Surface dynamics of the intermetallic catalyst Pd2Ga, Part II—reactivity and stability in liquid-phase hydrogenation of phenylacetylene. J Catal 309:221–230. https://doi.org/10.1016/J.JCAT.2013.09.018

    Article  CAS  Google Scholar 

  28. Bukhtiyarova MV, Nuzhdin AL, Kardash TY et al (2019) N-methylation of p-anisidine on the catalysts based on Cu-containing layered double hydroxides. Kinet Catal 60:343–354. https://doi.org/10.1134/S0023158419030030

    Article  CAS  Google Scholar 

  29. Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137. https://doi.org/10.1016/0368-2048(76)80015-1

    Article  CAS  Google Scholar 

  30. Armbrüster M, Behrens M, Cinquini F et al (2012) How to control the selectivity of palladium-based catalysts in hydrogenation reactions: the role of subsurface chemistry. ChemCatChem 4:1048–1063. https://doi.org/10.1002/cctc.201200100

    Article  CAS  Google Scholar 

  31. Grunwaldt JD, Caravati M, Baiker A (2006) Oxidic or metallic palladium: which is the active phase in Pd-catalyzed aerobic alcohol oxidation? J Phys Chem B 110:25586–25589. https://doi.org/10.1021/jp066949a

    Article  PubMed  CAS  Google Scholar 

  32. Mashkovsky IS, Markov PV, Bragina GO et al (2017) Formation of supported intermetallic nanoparticles in the Pd–Zn/α-Al2O3 catalyst. Kinet Catal 58:471–479. https://doi.org/10.1134/S0023158417040127

    Article  CAS  Google Scholar 

  33. Huang W, Lobo RF, Chen JG (2008) Characterization of Na+-β-zeolite supported Pd and PdAg bimetallic catalysts using EXAFS, TEM and flow reactor. J Mol Catal A: Chem 283:158–165. https://doi.org/10.1016/J.MOLCATA.2007.12.017

    Article  CAS  Google Scholar 

  34. Balerna A, Deganello G, Liotta L et al (2001) EXAFS and XRD study of Pd–Ag bimetallic catalysts supported on pumice from organometallic precursors. J Non-Cryst Solids 293–295:682–687. https://doi.org/10.1016/S0022-3093(01)00771-2

    Article  Google Scholar 

  35. Tkachenko OP, Stakheev AY, Kustov LM et al (2006) An easy way to Pd–Zn nanoalloy with defined composition from a heterobimetallic Pd(µ-OOCMe)4Zn(OH2) complex as evidenced by XAFS and XRD. Catal Lett 112:155–161. https://doi.org/10.1007/s10562-006-0196-6

    Article  CAS  Google Scholar 

  36. Bukhtiyarov VI, Slin’ko MG (2001) Metallic nanosystems in catalysis. Rus Chem Rev 70:147–159. https://doi.org/10.1070/RC2001v070n02ABEH000637

    Article  CAS  Google Scholar 

  37. Glyzdova DV, Smirnova NS, Leont’eva NN et al (2017) Synthesis and characterization of Sibunit-supported Pd–Ga, Pd–Zn, and Pd–Ag catalysts for liquid-phase acetylene hydrogenation. Kinet Catal 58:140–146. https://doi.org/10.1134/S0023158417020057

    Article  CAS  Google Scholar 

  38. Neyman KM, Lim KH, Chen Z-X et al (2007) Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition. Phys Chem Chem Phys 9:3470–3482. https://doi.org/10.1039/B700548B

    Article  PubMed  CAS  Google Scholar 

  39. Bahruji H, Bowker M, Hutchings G et al (2016) Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J Catal 343:133–146. https://doi.org/10.1016/J.JCAT.2016.03.017

    Article  CAS  Google Scholar 

  40. Föttinger K, Van Bokhoven JA, Nachtegaal M, Rupprechter G (2011) Dynamic structure of a working methanol steam reforming catalyst: in situ quick-EXAFS on Pd/ZnO nanoparticles. J Phys Chem Lett 2:428–433. https://doi.org/10.1021/jz101751s

    Article  CAS  Google Scholar 

  41. Ravanchi MT, Sahebdelfar S, Komeili S (2017) Acetylene selective hydrogenation: a technical review on catalytic aspects. Rev Chem Eng 34:215–237. https://doi.org/10.1515/revce-2016-0036

    Article  CAS  Google Scholar 

  42. Föttinger K (2013) PdZn based catalysts: connecting electronic and geometric structure with catalytic performance. Catalysis 25:77–117. https://doi.org/10.1039/9781849737203-00077

    Article  CAS  Google Scholar 

  43. Mashkovsky IS, Markov PV, Bragina GO et al (2017) Intermetallic Pd1–Zn1 nanoparticles in the selective liquid-phase hydrogenation of substituted alkynes. Kinet Catal 58:480–491. https://doi.org/10.1134/S0023158417040139

    Article  CAS  Google Scholar 

  44. Borodziński A, Bond GC (2008) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, Part 2: steady‐state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal Rev 50:379–469. https://doi.org/10.1080/01614940802142102

    Article  CAS  Google Scholar 

  45. Ryndin YA, Stenin MV, Boronin AI et al (1989) Effect of Pd/C dispersion on its catalytic properties in acetylene and vinylacetylene hydrogenation. Appl Catal 54:277–288. https://doi.org/10.1016/S0166-9834(00)82370-2

    Article  CAS  Google Scholar 

  46. Friedrich M, Teschner D, Knop-Gericke A, Armbrüster M (2012) Influence of bulk composition of the intermetallic compound ZnPd on surface composition and methanol steam reforming properties. J Catal 285:41–47. https://doi.org/10.1016/j.jcat.2011.09.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the Program of Fundamental Scientific Studies of State Academies of Sciences for years 2013–2020, direction V.46, project № V.46.2.5 (No. AAAA-A17-117021450096-8) and Haldor Topsoe. The research was performed using equipment of the Shared-Use Center "National Center for the Study of Catalysts" at the Boreskov Institute of Catalysis, the Scientific Research Center "Kurchatov Institute" and the Omsk Regional Center of Collective Usage, Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

The authors thank Y.V. Zubavichus for his assistance in obtaining the XAFS data, G.G. Savel’eva for determining the texture characteristics of the support and catalysts, R.R. Ismailov and A.V. Babenko for the analysis of the synthesized samples by AES-ICP, and P.G. Tsyrulnikov for valuable discussion of the results.

Corresponding author

Correspondence to Daria V. Glyzdova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glyzdova, D.V., Afonasenko, T.N., Khramov, E.V. et al. Zinc Addition Influence on the Properties of Pd/Sibunit Catalyst in Selective Acetylene Hydrogenation. Top Catal 63, 139–151 (2020). https://doi.org/10.1007/s11244-019-01215-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01215-9

Keywords

Navigation