Skip to main content
Log in

Synthesis and crystal structure of manganese(III), zinc(II) and cadmium(II) complexes based on a symmetrical macroacyclic Schiff base ligand containing piperazine moiety, DNA binding studies of complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three macroacyclic Schiff base complexes have been obtained by the reaction of a previously known Schiff base ligand, 2-((Z)-(2-((4-((Z)-2-((Z)-2-hydroxy-3-methoxybenzylideneamino)benzyl)piperazin-1-yl)methyl)phenylimino)methyl)-6-methoxyphenol (H2L), and Mn(II), Zn(II) and Cd(II) ions in mixture of ethanol and methanol solvents. The resultant complexes were characterized by physical and spectroscopic methods. Molar conductivity (ɅM) data were measured at 25 °C using 10−3 M solutions of the complexes in acetonitrile solvent. In addition, the structure of the [MnL]ClO4·CH3CN complex has been revealed by a single-crystal X-ray structural analysis. In this complex, the Mn(II) has been oxidized to Mn(III), with the manganese ion being in a slightly distorted trans-O2N4 octahedral coordination environment arising from all six donor atoms of the doubly deprotonated ligand. The interaction of the ligand and the corresponding Mn(III), Zn(II) and Cd(II) complexes with calf thymus DNA (ct-DNA) has been appraised by dynamic viscosity, emission titration and competitive fluorescence methods which revealed that the compounds interact with ct-DNA via an intercalation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rezaeivala M, Keypour H (2014) Coord Chem Rev 280:203–253

    Article  CAS  Google Scholar 

  2. Keypour H, Arzhangi P, Rahpeyma N, Rezaeivala M, Elerman Y, Khavasi (2011) HR. Inorg Chim Acta 36:79–85

    Google Scholar 

  3. Keypour H, Rezaeivala M, Mirzaei-Monsefa M, Sayin K, Dilek N, Unver H (2015) Inorg Chim Acta 432:243–249

    Article  CAS  Google Scholar 

  4. Armi G, Claude JP, Knapp MJ, Huffman JC, Hendrickson DN, Christou G (1998) J Am Chem Soc 120:2977

    Article  Google Scholar 

  5. Keypour H, Rezaeivala M, Ramezani-Aktij A, Bayat M, Dilek N, Ünver H (2016) J Mol Struct 1115:180–186

    Article  CAS  Google Scholar 

  6. Keypour H, Mahmoudabadi M, Shooshtari A, Bayat M, Mohsenzadeh F, Gable RW (2018) J Mol Struct 1155:196–204

    Article  CAS  Google Scholar 

  7. Anuj R, Riyaz S, Han-Seung S, Rahul P (2019) Expert Opin Ther Pat. https://doi.org/10.1080/13543776.2016.1189902

    Article  Google Scholar 

  8. Keypour H, Mahmoudabadi M, Shooshtari A, Hosseinzadeh L, Mohsenzadeh F, Gable RW (2017) Polyhedron 127:345–354

    Article  CAS  Google Scholar 

  9. Keypour H, Mahmoudabadi M, Shooshtari A, Bayat M, Ghassemzadeh M, Hosseinzadeh L, Mohsenzadeh F, Harms K (2017) Polyhedron 129:189–198

    Article  CAS  Google Scholar 

  10. Keypour H, Mahmoudabadi M, Shooshtari A, Bayat M, Karamian R, Asadbegy M, Gable RW (2018) Inorg Chim Acta 478:176–186

    Article  CAS  Google Scholar 

  11. Keypour H, Shooshtari A, Rezaeivala M, OzturkKup F, Amiri Rudbari H (2015) Polyhedron 97:75–82

    Article  CAS  Google Scholar 

  12. Parekh NM, Mistry BM, Pandurangan M, Shinde SK, Patel RV (2017) Chin Chem Lett 28:602–606

    Article  CAS  Google Scholar 

  13. Wang S, Li YJ, Ju FF, Xu WT, Kagesawa K, Li YH, Yamashita M, Huang W (2017) Dalton Trans 46:11063–11077

    Article  CAS  Google Scholar 

  14. Patel IA, Thaker BT (1999) Indian J Chem 38A:427–433

    CAS  Google Scholar 

  15. Nan Zhang, Fan Y, Huang G, Buac D, Bi C, Mac Y, Wang X, Zhang Z, Zhang X (2017) Inorg. Chim Acta 466:478–485

    Google Scholar 

  16. Gills JJ, Lopoiccolo J, Denni PA (2008) Autophagy 4:107–109

    Article  CAS  Google Scholar 

  17. Ling X, Zhong WY, Huang Q, Ni KY (2008) J Photochem Photobiol B Biol 93:172–176

    Article  CAS  Google Scholar 

  18. Shahabadi N, Kashanian S, Purfoulad M (2009) Spectrochim Acta Part A 72:757–761

    Article  Google Scholar 

  19. Keypour H, Rahpeyma N, Arzhangi P, Rezaeivala M, Elerman Y, Buyukgungor O, Valencia L (2010) Polyhedron 29:1144–1148

    Article  CAS  Google Scholar 

  20. Keypour H, Shooshtari A, Rezaeivala M, Bayat M, Amiri Rudbari H (2016) Inorg Chim Acta 440:139–147

    Article  CAS  Google Scholar 

  21. Aidi M, Keypour H, Shooshtari A, Mahmoudabadi M, Bayat M, Ahmadvand Z, Karamian R, Asadbegy M, Tavatli S, Gable RW (2019) Polyhedron 167:93–102

    Article  CAS  Google Scholar 

  22. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J. Appl. Cryst. 42:339–341

    Article  CAS  Google Scholar 

  23. Sheldrick GM (2015) Acta Cryst. A 71:3–8

    Article  Google Scholar 

  24. Sheldrick GM (2015) Acta Cryst. C 71:3–8

    Article  Google Scholar 

  25. Crys Alis Pro 1.171.39.46 (2018) Rigaku oxford diffraction

  26. Salehzadeh S, Hajibabei F, Hosseinpour Moghadam N, Sharifinia S, Khazalpour S, Golbedaghi R (2017) J Fluoresc 28:195–206

    Article  Google Scholar 

  27. Vijayalakshmi R, Kanthimathi M, Subramanian V, Nair BU (2000) Biochim Biophys Acta 1475:157–162

    Article  CAS  Google Scholar 

  28. Geary W (1971) Chem Rev 7:81–90

    CAS  Google Scholar 

  29. Brown ID, Altermatt D (1985) Acta Cryst B 41:244–247

    Article  Google Scholar 

  30. Llunell M, Casanova D, Cirera J, Bofill J, Alemany P, Alvarez S, Pinsky M, Avnir D (2013) SHAPE v. 2.1. Program for the calculation of continuous shape measures of polygonal and polyhedral molecular fragments. University of Barcelona, Barcelona

    Google Scholar 

  31. Shahabadi N, Pourfoulad M, Hosseinpour Moghadam N (2017) Nucleotides Nucleic Acids 36:31–48

    Article  CAS  Google Scholar 

  32. Hajibabaei F, Salehzadeh S, Golbedaghi R, Hosseinpour Moghadam N, Sharifinia S, Khazalpour S, Baghaeifar Z (2019) Polyhedron 162:232–239

    Article  CAS  Google Scholar 

  33. Sinha APB (1971) Spectroscopy in inorganic chemistry. Academic Press, New York

    Google Scholar 

  34. Kumar CV, Asuncion EH (1993) J Am Chem Soc 115:8547–8553

    Article  CAS  Google Scholar 

  35. Lerman LS (1961) J Mol Biol 3:18–30

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Faculty of Chemistry of Bu-Ali Sina University, for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Keypour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Supplementary data

Appendix A. Supplementary data

CCDC 1878313 contains the supplementary crystallographic data for [MnL]ClO4·CH3CN. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e303 mail: deposit@ccdc.cam.ac.uk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keypour, H., Azizi, E., Mahmoudabadi, M. et al. Synthesis and crystal structure of manganese(III), zinc(II) and cadmium(II) complexes based on a symmetrical macroacyclic Schiff base ligand containing piperazine moiety, DNA binding studies of complexes. Transit Met Chem 45, 227–235 (2020). https://doi.org/10.1007/s11243-019-00374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00374-8

Navigation