Skip to main content
Log in

Facile Synthesis of Silver Nanoparticles Using Lantana trifolia Aqueous Extracts and Their Antibacterial Activity

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Synthesis of metallic nanoparticles using secondary metabolites present in plant extracts has attracted attention. In this study, Lantana trifolia aqueous extracts were used to synthesize silver nanoparticles (AgNPs) which were then screened for their antimicrobial activity. The morphology, size and functional groups present in AgNPs was evaluated using electron microscopy and Fourier transform infrared spectroscopy (FT-IR). The role of temperature, reaction time and concentration of precursor ion were evaluated by measuring the surface plasmon resonance of AgNPs using UV–Vis spectroscopy. The crystal structure, hydrodynamic diameters and redox potential were evaluated using powder X-ray diffractometer (PWXRD), dynamic light scattering (DLS) and cyclic voltammetry respectively. The data obtained in this study revealed that increase in the reaction time led to an increase in surface plasmon resonance of AgNPs while the increase in temperature from 20 to 35 ℃ increased the rate of AgNPs synthesis. The XRD diffractogram revealed that the particles were composed of silver with 2θ = 38.36, 44.428, 54.89, and 57.87, corresponding to the silver crystal planes of (111), (200), (220), and (311). The diameters of the nanoparticles were between 35 and 70 nm, and they had moderate antimicrobial activity against E. coli, P. aeruginosa, C. albicans, S. aureus and B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. van Duin, D.L. Paterson, Multidrug-resistant bacteria in the community trends and lessons learned. Infect. Dis. Clin. North Am. 30, 377–390 (2016). https://doi.org/10.1016/j.idc.2016.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  2. S. Shaikh, N. Nazam, S.M.D. Rizvi, K. Ahmad, M.H. Baig, E.J. Lee, I. Choi, Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int. J. Mol. Sci. (2019). https://doi.org/10.3390/ijms20102468

    Article  PubMed  PubMed Central  Google Scholar 

  3. O. Lushchak, A. Zayachkivska, A. Vaiserman, Metallic nanoantioxidants as potential therapeutics for type 2 diabetes a hypothetical background and translational perspectives. Oxid. Med. Cell Longev. (2018). https://doi.org/10.1155/2018/3407375

    Article  PubMed  PubMed Central  Google Scholar 

  4. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles present situation and prospects for the future. Int. J. Nanomed. 12, 227–1249 (2017). https://doi.org/10.2147/IJN.S121956

    Article  Google Scholar 

  5. T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. (2016). https://doi.org/10.3389/fmicb.2016.01831

    Article  PubMed  PubMed Central  Google Scholar 

  6. R. Behra, L. Sigg, M.J.D. Clift, F. Herzog, M. Minghetti, B. Johnston, A. Petri-Fink, B. Rothen-Rutishauser, Bioavailability of silver nanoparticles and ions from a chemical and biochemical perspective. J. R. Soc. Interface. 10, 20130396 (2013). https://doi.org/10.1098/rsif.2013.0396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. I.-M. Chung, I. Park, K. Seung-Hyun, M. Thiruvengadam, G. Rajakumar, Plant-Mediated synthesis of silver nanoparticles their characteristic properties and therapeutic applications. Nanoscale Res. Lett. 11, 40 (2016). https://doi.org/10.1186/s11671-016-1257-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications a green expertise. J. Adv. Res. 7, 17–28 (2016). https://doi.org/10.1016/j.jare.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  9. A. Martínez-Abad, Multifunctional and nanoreinforced polymers for food packaging, (Elsevier. New York (2011). https://doi.org/10.1533/9780857092786.3.347

    Article  Google Scholar 

  10. S.-L. Abram, J. Gagnon, M. Priebe, N. Hérault, K.M. Fromm, Ag nanoencapsulation for antimicrobial applications. Chimia (Aarau). 72, 49–252 (2018). https://doi.org/10.2533/chimia.2018.249

    Article  CAS  Google Scholar 

  11. M. Priebe, J. Widmer, N. Suhartha Löwa, S.L. Abram, I. Mottas, A.K. Woischnig, P.S. Brunetto, N. Khanna, C. Bourquin, K.M. Fromm, Antimicrobial silver-filled silica nanorattles with low immunotoxicity in dendritic cells, Nanomed. Nanotechnol. Biol. Med. 13, 11–22 (2017). https://doi.org/10.1016/j.nano.2016.08.002.

  12. Q.B. Xu, L.J. Xie, H. Diao, F. Li, Y.Y. Zhang, F.Y. Fu, X.D. Liu, Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydr Polym. 177, 187–193 (2017). https://doi.org/10.1016/j.carbpol.2017.08.129

    Article  CAS  PubMed  Google Scholar 

  13. T.I. Shaheen, A.A.A. El Aty, In-situ green myco-synthesis of silver nanoparticles onto cotton fabrics for broad spectrum antimicrobial activity. Int. J. Biol. Macromol. 118, 2121–2130 (2018). https://doi.org/10.1016/j.ijbiomac.2018.07.062

    Article  CAS  PubMed  Google Scholar 

  14. S. Kaul, N. Gulati, D. Verma, S. Mukherjee, U. Nagaich, Role of nanotechnology in cosmeceuticals a review of recent. Adv. J. Pharm. 2018, 1–19 (2018). https://doi.org/10.1155/2018/3420204

    Article  CAS  Google Scholar 

  15. E.O. Sousa, J.G.M. Costa, Genus lantana Chemical aspects and biological activities. Brazilian J Pharmacogn. 22, 1155–1180 (2012). https://doi.org/10.1590/S0102-695X2012005000058

    Article  CAS  Google Scholar 

  16. S.S. Azam, A. Habib, A.S. Memic, M. Ahmed, M. Oves, M.S. Khan, Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria a comparative study. Int. J. Nanomed. 7, 6003–6009 (2012). https://doi.org/10.2147/IJN.S35347

    Article  CAS  Google Scholar 

  17. M.I. Masum, M.M. Siddiqa, K.A. Ali, Y. Zhang, Y. Abdallah, E. Ibrahim, W. Qiu, C. Yan, B. Li, Biogenic synthesis of silver nanoparticles using phyllanthus emblicafruit extract and its inhibitory action against the pathogen acidovorax oryzaestrain RS-2 of rice bacterial brown stripe. Front Microbiol. (2019). https://doi.org/10.3389/fmicb.2019.00820

    Article  PubMed  PubMed Central  Google Scholar 

  18. C. Ponce, J. Chanona, V. Garibay, E. Palacios, G. Calderon, R. Sabo, Functionalization of agave cellulose nanoparticles and its characterization by microscopy and spectroscopy techniques, microsc microanal. 19, 200–201 (2013). https://doi.org/10.1017/S1431927613002997.

  19. E.S. Madivoli, E.G. Maina, P.K. Kairigo, M.K. Murigi, J.K. Ogilo, J.O. Nyangau, P.K. Kimani, C. Kipyegon, In vitro antioxidant and antimicrobial activity of Prunus africana (Hook. f.) Kalkman (bark extracts) and Harrisonia abyssinica Oliv. extracts (bark extracts) a comparative study, J. Med. Plants Econ. Dev. (2018). https://doi.org/10.4102/jomped.v2i1.39.

  20. L. Katata-Seru, T. Moremedi, O.S. Aremu, I. Bahadur, Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications removal of nitrate from water and antibacterial activity against Escherichia coli. J. Mol. Liq. 256, 296–304 (2018). https://doi.org/10.1016/j.molliq.2017.11.093

    Article  CAS  Google Scholar 

  21. D. Ciolacu, F. Ciolacu, P.V. Popa, Amorphous cellulose—structure and characterization, Cellul. Chem. Technol. 45, 3–21

  22. Z. Wang, C. Fang, M. Megharaj, Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain. Chem. Eng. 2(2014), 1022–1025 (2018). https://doi.org/10.1021/sc500021n

    Article  CAS  Google Scholar 

  23. Y.Y. Loo, Y. Rukayadi, M.-A.-R. Nor-Khaizura, C.H. Kuan, B.W. Chieng, M. Nishibuchi, S. Radu, In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol. 9, 1555 (2018). https://doi.org/10.3389/fmicb.2018.01555

    Article  PubMed  PubMed Central  Google Scholar 

  24. J. Olson, S. Dominguez-Medina, A. Hoggard, L.Y. Wang, W.S. Chang, S. Link, Optical characterization of single plasmonic nanoparticles. Chem. Soc. Rev. 44, 40–57 (2015). https://doi.org/10.1039/c4cs00131a

    Article  CAS  PubMed  Google Scholar 

  25. S.I. Vasylevskyi, S. Kracht, P. Corcosa, K.M. Fromm, B. Giese, M. Füeg, Formation of silver nanoparticles by electron transfer in peptides and c-cytochromes. Angew. Chem. Int. Ed. 56, 5926–5930 (2017). https://doi.org/10.1002/anie.201702621

    Article  CAS  Google Scholar 

  26. M. Ndikau, N.M. Noah, D.M. Andala, E. Masika, Green synthesis and characterization of silver nanoparticles using citrullus lanatus fruit rind extract. Int. J. Anal. Chem. (2017). https://doi.org/10.1155/2017/8108504

    Article  PubMed  PubMed Central  Google Scholar 

  27. X.C. Jiang, W.M. Chen, C.Y. Chen, S.X. Xiong, A.B. Yu, Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res. Lett. 6, 1–9 (2011). https://doi.org/10.1007/s11671-010-9780-1

    Article  CAS  Google Scholar 

  28. N. Ahmad, B.C. Ang, M.A. Amalina, C.W. Bong, Influence of precursor concentration and temperature on the formation of nanosilver in chemical reduction method, Sains Malaysiana. 47, 57–168 (2018). https://doi.org/10.17576/jsm-2018-4701-19.

  29. M. Vanaja, K. Paulkumar, M. Baburaja, S. Rajeshkumar, G. Gnanajobitha, C. Malarkodi, M. Sivakavinesan, G. Annadurai, Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg. Chem. Appl. (2014). https://doi.org/10.1155/2014/742346

    Article  PubMed  PubMed Central  Google Scholar 

  30. G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd edition, 2001. https://doi.org/10.1002/jrs.1238.

  31. C. Levard, S. Mitra, T. Yang, A.D. Jew, A.R. Badireddy, G. V. Lowry, G.E. Brown, Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli, Environ. Sci. Technol. 47, 5738–5745 (2013). https://doi.org/10.1021/es400396f.

  32. J. Hoyos-Arbeláez, M. Vázquez, J. Contreras-Calderón, Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages a review. Food Chem. 221, 1371–1381 (2017). https://doi.org/10.1016/j.foodchem.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  33. M. José Jara-Palacios, M. Luisa Escudero-Gilete, J. Miguel Hernández-Hierro, F.J. Heredia, D. Hernanz, Cyclic voltammetry to evaluate the antioxidant potential in winemaking by-products, Talanta. 165, 211–215 (2017). https://doi.org/10.1016/j.talanta.2016.12.058.

  34. L.C. Yun’an Qing, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, Y. Qin, Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies, Int. J. Nanomed. 13, 3311–3327 (2018). https://doi.org/10.2147/IJN.S165125.

Download references

Acknowledgements

The authors would like to thank the Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology and Sino Africa Joint Research Centre (SAJOREC) for provision of facilities where part of the work was done. The authors also acknowledge the financial support of the National research fund, AFRICA-ai-JAPAN Project JFY 2018/2019 and Research Production and Extension division, Jomo Kenyatta University of Agriculture and Technology (JKUAT-RPE) for their financial support. The authors also acknowledge the financial support of the Federal Commission of Scholarships for a one-year PhD research stay at the University of Fribourg under Prof. Katharina M. Fromm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Shigwenya Madivoli.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madivoli, E.S., Kareru, P.G., Gachanja, A.N. et al. Facile Synthesis of Silver Nanoparticles Using Lantana trifolia Aqueous Extracts and Their Antibacterial Activity. J Inorg Organomet Polym 30, 2842–2850 (2020). https://doi.org/10.1007/s10904-019-01432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01432-5

Keywords

Navigation