Skip to main content
Log in

Binuclear Palladium Complex Immobilized on Mesoporous SBA-16: Efficient Heterogeneous Catalyst for the Carbonylative Suzuki Coupling Reaction of Aryl Iodides and Arylboronic Acids Using Cr(CO)6 as Carbonyl Source

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, a binuclear palladium complex immobilized on the organo-functionalized SBA-16 was prepared and structurally characterized by routine techniques. Characterizations indicated that the mesostructure of SBA-16 was maintained after the immobilization of palladium complex. Then, the prepared nanomaterial was applied as a heterogeneous catalyst in the carbonylative Suzuki coupling reaction of aryl iodides with arylboronic acids using Cr(CO)6 as carbonyl source. The catalyst was efficiently promoted the coupling reactions of various aryl iodides and arylboronic acids to give the corresponding diaryl ketones in excellent yields. Moreover, the catalyst was readily recovered by filtration and could be reused for seven cycles without losing its structural integrity and catalytic activity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Scheme 3

Similar content being viewed by others

References

  1. Gautam P, Tiwari NJ, Bhanage BM (2019) Aminophosphine palladium pincer-catalyzed carbonylative sonogashira and Suzuki-Miyaura cross-coupling with high catalytic turnovers. ACS Omega 4:1560–1574

    CAS  PubMed  PubMed Central  Google Scholar 

  2. You S, Yan C, Zhang R, Cai M (2019) A convenient and practical heterogeneous palladium-catalyzed carbonylative Suzuki coupling of aryl iodides with formic acid as carbon monoxide source. Appl Organomet Chem 33:e4650

    Google Scholar 

  3. Bjerglund KM, Skrydstrup T, Molander GA (2014) Carbonylative Suzuki couplings of aryl bromides with boronic acid derivatives under base-free conditions. Org Lett 16:1888–1891

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gautam P, Bhanage BM (2015) Palladacycle catalyzed carbonylative Suzuki-Miyaura coupling with high turnover number and turnover frequency. J Org Chem 80:7810–7815

    CAS  PubMed  Google Scholar 

  5. Boubakri L, Al-Ayed AS, Mansour L, Harrath AA, Al-Tamimi J, Özdemir I, Yasar S, Hamdi N (2019) In situ palladium/NH heterocyclic carbene complex catalyzed carbonylative cross-coupling reactions of arylboronic acids with 2-bromopyridine under CO pressure: efficient synthesis of unsymmetrical arylpyridine ketones and their antimicrobial activities. Catal Lett 44:321–328

    CAS  Google Scholar 

  6. Wakaki T, Togo T, Yoshidome D, Kuninobu Y, Kanai M (2018) Palladium-catalyzed synthesis of diaryl ketones from aldehydes and (hetero)aryl halides via C-H bond activation. ACS Catal 8:3123–3128

    CAS  Google Scholar 

  7. Hao CY, Wang D, Li YW, Dong LL, Jin Y, Zhang XR, Zhu HY, Chang S (2016) Carbonylative coupling of aryl tosylates/triflates with arylboronic acids under CO atmosphere. RSC Adv 6:86502–86509

    CAS  Google Scholar 

  8. Yu D, Xu F, Li D, Han W (2019) Transition-metal-free carbonylative Suzuki-Miyaura reactions of aryl iodides with arylboronic acids using N-formylsaccharin as CO surrogate. Adv Synth Catal 361:3102–3107

    CAS  Google Scholar 

  9. Touj N, Al-Ayed AS, Sauthier M, Mansour L, Harrath AH, Tamimi JA, Özdemir I, Yaşar S, Hamdi N (2018) Efficient in situ N-heterocyclic carbene palladium(II) generated from Pd(OAc)2 catalysts for carbonylative Suzuki coupling reactions of arylboronic acids with 2-bromopyridine under inert conditions leading to unsymmetrical arylpyridine ketones: synthesis, characterization and cytotoxic activities. RSC Adv 8:40000–40015

    CAS  Google Scholar 

  10. Zhong Y, Han W (2014) Iron-catalyzed carbonylative Suzuki reactions under atmospheric pressure of carbon monoxide. Chem Commun 50:3874–3877

    CAS  Google Scholar 

  11. Xu F, Li D, Han W (2019) Transition-metal-free carbonylation of aryl halides with arylboronic acids by utilizing stoichiometric CHCl3 as the carbon monoxide-precursor. Green Chem 21:2911–2915

    CAS  Google Scholar 

  12. Zhao H, Du H, Yuan X, Wang T, Han W (2016) Iron-catalyzed carbonylation of aryl halides with arylborons using stoichiometric chloroform as the carbon monoxide source. Green Chem 18:5782–5787

    CAS  Google Scholar 

  13. Sharma P, Rohilla S, Jain N (2017) Palladium catalyzed carbonylative coupling for synthesis of arylketones and arylesters using chloroform as the carbon monoxide source. J Org Chem 82:1105–1113

    CAS  PubMed  Google Scholar 

  14. Akerbladh L, Odell LR, Larhed M (2019) Palladium-catalyzed molybdenum hexacarbonyl-mediated gas-free carbonylative reactions. Synlett 30:141–155

    Google Scholar 

  15. Darbem MP, Kanno KS, Oliveira IM, Esteves CHA, Pimenta DC, Stefani HA (2019) Synthesis of amidoglucals and glucal esters via carbonylative coupling reactions of 2-iodoglucal using Mo(CO)6 as a CO source. New J Chem 43:696–699

    CAS  Google Scholar 

  16. Ghosh P, Ganguly B, Das S (2018) Pd-NHC catalysed carbonylative Suzuki coupling reaction and its application towards the synthesis of biologically active 3-aroylquinolin-4(1H)-one and acridone scaffolds. Appl Organomet Chem 32:e4173

    Google Scholar 

  17. Joharian M, Morsali A, Tehrani AA, Carlucc L, Proserpio DM (2018) Water-stable fluorinated metal-organic frameworks (F-MOFs) with hydrophobic properties as efficient and highly active heterogeneous catalysts in aqueous solution. Green Chem 20:5336–5345

    CAS  Google Scholar 

  18. Chen SC, Li N, Tian F, Chai NN, He MY, Chen Q (2018) Mild direct amination of benzoxazoles using interpenetrating Cobalt(II)based metal-organic framework as an efficient heterogeneous catalyst. Mol Catal 450:104–111

    CAS  Google Scholar 

  19. Hosseini MS, Masteri-Farahani M (2019) Surface functionalization of magnetite nanoparticles with sulfonic acid and heteropoly acid: efficient magnetically recoverable solid acid catalysts. Chem Asian J 14:1076–1083

    CAS  PubMed  Google Scholar 

  20. Wang K, Jia Z, Yang X, Wang L, Gu Y, Tan B (2017) Acid and base coexisted heterogeneous catalysts supported on hypercrosslinked polymers for one-pot cascade reactions. J Catal 348:168–176

    CAS  Google Scholar 

  21. Sarmiento JT, Suárez-Pantiga S, Olmos A, Varea T, Asensio G (2017) Silica immobilized NHC-Gold(I) complexes: versatile catalysts for the functionalization of alkynes under batch and continuous flow conditions. ACS Catal 7:7146–7155

    CAS  Google Scholar 

  22. Takenaka Y, Fukaya N, Choi SJ, Mori G, Kiyosu T, Yasuda H, Choi JC (2018) Synthesis of cyclic thiocarbonates from thiiranes and CS2 with silica-immobilized catalysts. Ind Eng Chem Res 57(2018):891–896

    CAS  Google Scholar 

  23. Khedkar MV, Sasaki T, Bhanage BM (2013) Efficient, recyclable and phosphine-free carbonylative Suzuki coupling reaction using immobilized palladium ion-containing ionic liquid: synthesis of aryl ketones and heteroaryl ketones. RSC Adv 3:7791–7797

    CAS  Google Scholar 

  24. Jiao N, Li Z, Wang Y, Liu J, Xia C (2015) Palladium nanoparticles immobilized onto supported ionic liquid-like phases (SILLPs) for the carbonylative Suzuki coupling reaction. RSC Adv 5:26913–26922

    CAS  Google Scholar 

  25. Wan Y, Song F, Ye T, Li G, Liu D, Lei Y (2019) Carbonylative Suzuki coupling and alkoxy carbonylation of aryl halides using palladium supported on phosphorus-doped porous organic polymer as an active and robust catalyst. Appl Organomet Chem 33:e4714

    Google Scholar 

  26. Ketike T, Velpula VRK, Madduluri VR, Kamaraju SRR, Burri DR (2018) Carbonylative Suzuki-Miyaura cross-coupling over Pd NPs/rice-husk carbon-silica solid catalyst: effect of 1,4-dioxane solvent. ChemistrySelect 3:7164–7169

    CAS  Google Scholar 

  27. Gautam P, Dhiman M, Polshettiwar V, Bhanage BM (2016) KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki-Miyaura cross-coupling. Green Chem 18:5890–5899

    CAS  Google Scholar 

  28. Khedkar MV, Tambade PJ, Qureshi ZS, Bhanage BM (2010) Pd/C: an efficient, heterogeneous and reusable catalyst for phosphane-free carbonylative Suzuki coupling reactions of aryl and heteroaryl iodides. Eur J Org Chem 2010:6981–6986

    Google Scholar 

  29. Saptal VB, Saptal MV, Mane RS, Sasaki T, Bhanage BM (2019) Amine-functionalized graphene oxide-stabilized Pd nanoparticles (Pd@APGO): a novel and efficient catalyst for the Suzuki and Carbonylative Suzuki-Miyaura coupling reactions. ACS Omega 4:643–649

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cai M, Zheng G, Zha L, Peng J (2009) Carbonylative Suzuki-Miyaura coupling of arylboronic acids with aryl iodides catalyzed by the MCM-41-supported bidentate phosphane palladium(II) complex. Eur J Org Chem 2009:1585–1591

    Google Scholar 

  31. Cai M, Peng J, Hao W, Ding G (2011) A phosphine-free carbonylative cross-coupling reaction of aryl iodides with arylboronic acids catalyzed by immobilization of palladium in MCM-41. Green Chem 13:190–196

    CAS  Google Scholar 

  32. Hajipour AR, Tavangar-Rizi Z (2017) Straightforward and recyclable system for synthesis of biaryl ketones via carbonylative coupling reactions of aryl halides with PhB(OH)2 and (EtO)3PhSi. ChemistrySelect 2:8990–8999

    CAS  Google Scholar 

  33. Niu J, Liu M, Wang P, Long Y, Xie M, Li R, Ma J (2014) Stabilizing PdII on hollow magnetic mesoporous spheres: a highly active and recyclable catalyst for carbonylative cross-coupling and Suzuki coupling reactions. New J Chem 38:1471–1476

    CAS  Google Scholar 

  34. Niu JR, Huo X, Zhang FW, Wang HB, Zhao P, Hu WQ, Ma J, Li R (2013) Preparation of recoverable Pd catalysts for carbonylative cross-coupling and hydrogenation reactions. ChemCatChem 5:349–354

    CAS  Google Scholar 

  35. Zhu X, Niu J, Zhang F, Zhou J, Li X, Ma J (2014) Preparation of recoverable Fe3O4@PANI–PdII core/shell catalysts for Suzuki carbonylative cross-coupling reactions. New J Chem 38:4622–4627

    CAS  Google Scholar 

  36. Wang P, Zhu H, Liu M, Niu J, Yuan B, Li R, Ma J (2014) Stabilizing Pd on the surface of amine-functionalized hollow Fe3O4 spheres: a highly active and recyclable catalyst for Suzuki cross coupling and hydrogenation reactions. RSC Adv 4:28922–28927

    CAS  Google Scholar 

  37. Augustyniaka AW, Zawartka W, Navarro JAR, Trzeciak AM (2016) Palladium nanoparticles supported on a nickel pyrazolate metal organic framework as catalyst for Suzuki and carbonylative Suzuki couplings. Dalton Trans 45:13525–13531

    Google Scholar 

  38. Davidson M, Ji Y, Leong GJ, Kovach NC, Trewyn BG, Richards RM (2018) Hybrid mesoporous silica/noble metal nanoparticle materials-synthesis and catalytic applications. ACS Appl Nano Mater 1:4386–4400

    CAS  Google Scholar 

  39. Das S, Asefa T (2011) Epoxide ring-opening reactions with mesoporous silica-supported Fe(III) catalysts. ACS Catal 1:502–510

    CAS  Google Scholar 

  40. Asefa C, Fajardo M, Hierro I, Perez Y (2019) Selective oxidation of thioanisole by titanium complexes immobilized on mesoporous silica nanoparticles: elucidating the environment of titanium(IV) species. Catal Sci Technol 9:620–633

    Google Scholar 

  41. Zhao Y, Zhang Y, Wang Y, Zhang J, Xu Y, Wang S, Ma X (2017) Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation. Appl Catal A 539:59–69

    CAS  Google Scholar 

  42. Pan X, Chen Y, Zhao P, Li D, Liu Z (2015) Highly efficient solid-phase labeling of saccharides within boronic acid functionalized mesoporous silica nanoparticles. Angew Chem Int Ed 54:6173–6176

    CAS  Google Scholar 

  43. Carta D, Mountjoy G, Apps R, Corrias A (2012) Effect of the support on the formation of FeCo alloy nanoparticles in an SBA-16 mesoporous silica matrix: an X-ray absorption spectroscopy study. J Phys Chem C 116:12353–12365

    CAS  Google Scholar 

  44. Ghodsinia SSE, Akhlaghinia B (2019) CuI-anchored onto mesoporous SBA-16 functionalized by aminated 3-glycidyloxypropyltrimethoxysilane with thiosemicarbazide (SBA-16/ GPTMS-TSC-CuI): a heterogeneous mesostructured catalyst for S-arylation reaction under solvent-free conditions. Green Chem 21:3029–3049

    CAS  Google Scholar 

  45. Akhlaghinia X, Yang H, Huo Y, Li J, Ma J (2016) Cu (I)-functionalized SBA-16: an efficient catalyst for the synthesis of α-ketoamides under moderate conditions. Dalton Trans 45:8972–8983

    Google Scholar 

  46. Niakan M, Asadi Z, Masteri-Farahani M (2018) A covalently anchored Pd(II)-Schiff base complex over a modified surface of mesoporous silica SBA-16: an efficient and reusable catalyst for the Heck-Mizoroki coupling reaction in water. Colloids Surf A 551:117–127

    CAS  Google Scholar 

  47. Yang H, Han X, Li G, Wang Y (2009) N-Heterocyclic carbene palladium complex supported on ionic liquid-modified SBA-16: an efficient and highly recyclable catalyst for the Suzuki and Heck reactions. Green Chem 11:1184–1193

    CAS  Google Scholar 

  48. Cao Z, Zhang X, Xu C, Duan A, Guo R, Zhao Z, Wu Z, Peng C, Li J, Wang X, Meng Q (2017) The synthesis of Al-SBA-16 materials with a novel method and their catalytic application on hydrogenation for FCC diesel. Energy Fuels 31:805–814

    CAS  Google Scholar 

  49. Long B, Zheng Y, Lin L, Alamry KA, Asiri AM, Wang X (2017) Cubic mesoporous carbon nitride polymers with large cage type pores for visible light photocatalysis. J Mater Chem A 5:16179–16188

    CAS  Google Scholar 

  50. Zheng P, Hu D, Meng Q, Liu C, Wang X, Fan J, Duan A, Xu C (2019) Influence of support acidity on the HDS performance over Beta-SBA-16 and Al-SBA-16 substrates: a combined experimental and theoretical study. Energy Fuels 33:1479–1488

    CAS  Google Scholar 

  51. Sun H, Tang Q, Du Y, Liu X, Chen Y, Yang Y (2009) Mesostructured SBA-16 with excellent hydrothermal, thermal and mechanical stabilities: modified synthesis and its catalytic application. J Colloid Interface Sci 333:317–323

    CAS  PubMed  Google Scholar 

  52. Asadi Z, Golchin M, Eigner V, Dusek M, Amirghofran Z (2018) A novel water-soluble tetranuclear copper (II) Schiff base cluster bridged by 2, 6-bis-[(2hydroxyethylimino)methyl]-4-methylphenol in interaction with BSA: synthesis, X-ray crystallography, docking and cytotoxicity studies. J Photochem Photobiol A 361:93–104

    CAS  Google Scholar 

  53. Azimov F, Markova I, Stefanova V, Sharipov K (2012) Synthesis and characterization of SBA-15 and Ti-SBA-15 nanoporous materials for DME catalysts. J Univ Chem Technol Metall 47:333–340

    CAS  Google Scholar 

  54. Masteri-Farahani M, Modarres M (2017) Superiority of activated carbon versus MCM-41 for the immobilization of molybdenum dithiocarbamate complex as heterogeneous epoxidation catalyst. ChemistrySelect 2:1163–1169

    CAS  Google Scholar 

  55. Wei S, Ma Z, Wang P, Dong Z, Ma J (2013) Anchoring of palladium (II) in functionalized SBA-16: an efficient heterogeneous catalyst for Suzuki coupling reaction. J Mol Catal A 370:175–181

    CAS  Google Scholar 

  56. Dhara K, Sarkar K, Srimani D, Saha SK, Chattopadhyay P, Bhaumik A (2010) A new functionalized mesoporous matrix supported Pd(II)-Schiff base complex: an efficient catalyst for the Suzuki-Miyaura coupling reaction. Dalton Trans 39:6395–6402

    CAS  PubMed  Google Scholar 

  57. Liu H, Li T, Xue X, Xu W, Wu Y (2016) Mechanism of a self-assembled Pd (ferrocenylimine)-Si compound-catalysed Suzuki coupling reaction. Catal Sci Technol 6:1667–1676

    CAS  Google Scholar 

  58. Özdemir Ö, Gürkan P, Sarı M, Tunç T (2015) Synthesis of monosodium salts of N-(5-nitrosalicylidene)-D-amino acid Schiff bases and their iron(III) complexes: spectral and physical characterizations, antioxidant activities. J Coord Chem 68:2565–2585

    Google Scholar 

  59. Liu Y, Zhou Y, Li J, Wang Q, Qin Q, Zhang W (2017) Direct aerobic oxidative homocoupling of benzene to biphenyl over functional porous organic polymer supported atomically dispersed palladium catalyst. Appl Catal B 209:679–688

    CAS  Google Scholar 

  60. Gemo N, Sterchele S, Biasi P, Centomo P, Canu P, Zecca M, Shchukarev A, Kordás K, Salmi TO, Mikkola JP (2015) The influence of catalyst amount and Pd loading on the H2O2 synthesis from hydrogen and oxygen. Catal Sci Technol 5:3545–3555

    CAS  Google Scholar 

  61. Wei Y, Mao Z, Li Z, Zhang F, Li H (2018) Aerosol-assisted rapid fabrication of heterogeneous organopalladium catalyst with hierarchically bimodal pores. ACS Appl Mater Interfaces 10:13914–13923

    CAS  PubMed  Google Scholar 

  62. Gregg S, Sing K (1982) Surface area and porosity. Academic Press, New York

    Google Scholar 

  63. Zhao Y, Zhang Y, Chen J, Li G, Liew K, Nordin MRB (2012) SBA-16-supported cobalt catalyst with high activity and stability for Fischer-Tropsch synthesis. ChemCatChem 4:265–272

    CAS  Google Scholar 

  64. Chen CS, Budi CS, Wu HC, Saikia D, Kao HM (2017) Size-tunable Ni nanoparticles supported on surface-modified, cage type mesoporous silica as highly active catalysts for CO2 hydrogenation. ACS Catal 7:8367–8381

    CAS  Google Scholar 

  65. Monguchi Y, Sakai K, Endo K, Fujita Y, Niimura M, Yoshimura M, Mizusaki T, Sawama Y, Sajiki H (2012) Carbon-carbon bond formation by ligand-free cross-coupling reaction using palladium catalyst supported on synthetic adsorbent. ChemCatChem 4:546–558

    CAS  Google Scholar 

  66. Zhou Q, Wei S, Han W (2014) In situ generation of palladium nanoparticles: ligand-free palladium catalyzed pivalic acid assisted carbonylative Suzuki reactions at ambient conditions. J Org Chem 79:1454–1460

    CAS  PubMed  Google Scholar 

  67. Sun X, Zheng Y, Sun L, Lin Q, Su H, Qi C (2016) Immobilization of palladium (II) complexes on ethylenediamine functionalized core-shell magnetic nanoparticles: an efficient and recyclable catalyst for aerobic oxidation of alcohols and carbonylative Suzuki coupling reaction. Nano-Struct Nano-Objects 5:7–14

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this research by Shiraz University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Asadi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niakan, M., Asadi, Z. & Emami, M. Binuclear Palladium Complex Immobilized on Mesoporous SBA-16: Efficient Heterogeneous Catalyst for the Carbonylative Suzuki Coupling Reaction of Aryl Iodides and Arylboronic Acids Using Cr(CO)6 as Carbonyl Source. Catal Lett 150, 404–418 (2020). https://doi.org/10.1007/s10562-019-03087-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03087-w

Keywords

Navigation