1932

Abstract

Stable isotope ratios of hydrogen and oxygen have been applied to water cycle research for over 60 years. Over the past two decades, however, new data, data compilations, and quantitative methods have supported the application of isotopic data to address large-scale water cycle problems. Recent results have demonstrated the impact of climate variation on atmospheric water cycling, provided constraints on continental- to global-scale land-atmosphere water vapor fluxes, revealed biases in the sources of runoff in hydrological models, and illustrated regional patterns of water use and management by people. In the past decade, global isotopic observations have spurred new debate over the role of soils in the water cycle, with potential to impact both ecological and hydrological theory. Many components of the water cycle remain underrepresented in isotopic databases. Increasing accessibility of analyses and improved platforms for data sharing will refine and grow the breadth of these contributions in the future.

  • ▪  Isotope ratios in water integrate information on hydrological processes over scales from cities to the globe.
  • ▪  Tracing water with isotopes helps reveal the processes that govern variability in the water cycle and may govern future global changes.
  • ▪  Improvements in instrumentation, data sharing, and quantitative analysis have advanced isotopic water cycle science over the past 20 years.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060220
2019-05-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-053018-060220.html?itemId=/content/journals/10.1146/annurev-earth-053018-060220&mimeType=html&fmt=ahah

Literature Cited

  1. Aemisegger F, Pfahl S, Sodemann H, Lehner I, Seneviratne SI, Wernli H 2014. Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmos. Chem. Phys. 14:4029–54
    [Google Scholar]
  2. Aggarwal PK, Romatschke U, Araguas-Araguas L, Belachew D, Longstaffe FJ et al. 2016. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci. 9:624–29
    [Google Scholar]
  3. Allison G, Barnes C, Hughes M 1983. The distribution of deuterium and 18O in dry soils 2. Experimental. J. Hydrol. 64:377–97
    [Google Scholar]
  4. Alton P, Fisher R, Los S, Williams M 2009. Simulations of global evapotranspiration using semiempirical and mechanistic schemes of plant hydrology. Glob. Biogeochem. Cycles 23:GB4023
    [Google Scholar]
  5. Anderson L, Abbott MB, Finney BP, Burns SJ 2005. Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quat. Res. 64:21–35
    [Google Scholar]
  6. Bailey A, Posmentier E, Feng X 2018. Patterns of evaporation and precipitation drive global isotopic changes in atmospheric moisture. Geophys. Res. Lett. 45:7093–101
    [Google Scholar]
  7. Baldini LM, McDermott F, Foley AM, Baldini JUL 2008. Spatial variability in the European winter precipitation δ18O-NAO relationship: implications for reconstructing NAO-mode climate variability in the Holocene. Geophys. Res. Lett. 35:L04709
    [Google Scholar]
  8. Berkelhammer M, Hu J, Bailey A, Noone D, Still C et al. 2013. The nocturnal water cycle in an open‐canopy forest. J. Geophys. Res. Atmos. 118:10225–42
    [Google Scholar]
  9. Berry ZC, Evaristo J, Moore G, Poca M, Steppe K et al. 2018. The two water worlds hypothesis: addressing multiple working hypotheses and proposing a way forward. Ecohydrology 11:e1843
    [Google Scholar]
  10. Beven K, Germann P 1982. Macropores and water flow in soils. Water Resour. Res. 18:1311–25
    [Google Scholar]
  11. Birks SJ, Edwards TWD 2009. Atmospheric circulation controls on precipitation isotope-climate relations in western Canada. Tellus 61B:566–76
    [Google Scholar]
  12. Bowen GJ 2010. Isoscapes: spatial pattern in isotopic biogeochemistry. Annu. Rev. Earth Planet. Sci. 38:161–87
    [Google Scholar]
  13. Bowen GJ 2015. The diversified economics of soil water. Nature 525:43–44
    [Google Scholar]
  14. Bowen GJ, Cerling TE, Ehleringer JR 2007a. Stable isotopes and human water resources: signals of change. Stable Isotopes as Indicators of Ecological Change TE Dawson, R Siegwolf 285–300 Amsterdam: Elsevier
    [Google Scholar]
  15. Bowen GJ, Ehleringer JR, Chesson LA, Stange E, Cerling TE 2007b. Stable isotope ratios of tap water in the contiguous USA. Water Resour. Res. 43:W03419
    [Google Scholar]
  16. Bowen GJ, Kennedy CD, Henne PD, Zhang T 2012. Footprint of recycled water subsidies downwind of Lake Michigan. Ecosphere 3:653
    [Google Scholar]
  17. Bowen GJ, Kennedy CD, Liu Z, Stalker J 2011. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous USA. J. Geophys. Res. 116:G4G04011
    [Google Scholar]
  18. Bowen GJ, Putman A, Brooks JR, Bowling DR, Oerter EJ, Good SP 2018. Inferring the source of evaporated waters using stable H and O isotopes. Oecologia 187:1025–39
    [Google Scholar]
  19. Bowling DR, Schulze ES, Hall SJ 2017. Revisiting streamside trees that do not use stream water: Can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source. ? Ecohydrology 10:e1771
    [Google Scholar]
  20. Brooks JR, Barnard HR, Coulombe R, McDonnell JJ 2010. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat. Geosci. 3:100–4
    [Google Scholar]
  21. Cai W, Santoso A, Wang G, Yeh S-W, An S-I et al. 2015. ENSO and greenhouse warming. Nat. Climate Change 5:849
    [Google Scholar]
  22. Cai Z, Tian L 2016a. Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian Monsoon region. J. Climate 29:1339–52
    [Google Scholar]
  23. Cai Z, Tian L 2016b. Processes governing water vapor isotope composition in the Indo-Pacific region: convection and water vapor transport. J. Climate 29:8535–46
    [Google Scholar]
  24. Cai Z, Tian L, Bowen GJ 2017. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region. Earth Planet. Sci. Lett. 475:25–33
    [Google Scholar]
  25. Cernusak LA, Barbour MM, Arndt SK, Cheesman AW, English NB et al. 2016. Stable isotopes in leaf water of terrestrial plants. Plant Cell Environ 39:1087–102
    [Google Scholar]
  26. Cernusak LA, Pate JS, Farquhar GD 2002. Diurnal variation in the stable isotope composition of water and dry matter in fruiting Lupinus angustifolius under field conditions. Plant Cell Environ 25:893–907
    [Google Scholar]
  27. Chamberlain CP, Winnick MJ, Mix HT, Chamberlain SD, Maher K 2014. The impact of Neogene grassland expansion and aridification on the isotopic composition of continental precipitation. Glob. Biogeochem. Cycles 28:992–1004
    [Google Scholar]
  28. Comas-Bru L, McDermott F, Werner M 2016. The effect of the East Atlantic pattern on the precipitation δ18O-NAO relationship in Europe. Climate Dyn 47:2059–69
    [Google Scholar]
  29. Conroy JL, Cobb KM, Noone D 2013. Comparison of precipitation isotope variability across the tropical Pacific in observations and SWING2 model simulations. J. Geophys. Res. Atmos. 118:5867–92
    [Google Scholar]
  30. Conroy JL, Noone D, Cobb KM, Moerman JW, Konecky BL 2016. Paired stable isotopologues in precipitation and vapor: a case study of the amount effect within western tropical Pacific storms. J. Geophys. Res. Atmos. 121:3290–303
    [Google Scholar]
  31. Craig H 1961. Isotopic variations in meteoric waters. Science 133:1702–3
    [Google Scholar]
  32. Craig H, Gordon LI 1965. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperatures E Tongiorgi 9–130 Pisa, Italy: V. Lischi
    [Google Scholar]
  33. Dai A 2006. Recent climatology, variability, and trends in global surface humidity. J. Climate 19:3589–606
    [Google Scholar]
  34. Dansgaard W 1954. The O18-abundance in fresh water. Geochim. Cosmochim. Acta 6:241–60
    [Google Scholar]
  35. Dansgaard W 1964. Stable isotopes in precipitation. Tellus 16:436–68
    [Google Scholar]
  36. Deininger M, Werner M, McDermott F 2016. North Atlantic Oscillation controls on oxygen and hydrogen isotope gradients in winter precipitation across Europe: implications for palaeoclimate studies. Climate Past 12:2127–43
    [Google Scholar]
  37. Dongmann G, Nurnberg HW, Forstel H, Wagener K 1974. On the enrichment of H218O in the leaves of transpiring plants. Radiat. Environ. Biophys. 11:41–52
    [Google Scholar]
  38. Dubbert M, Cuntz M, Piayda A, Werner C 2014. Oxygen isotope signatures of transpired water vapor: the role of isotopic non‐steady‐state transpiration under natural conditions. New Phytol 203:1242–52
    [Google Scholar]
  39. Ehleringer JR, Dawson TE 1992. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–82
    [Google Scholar]
  40. Ehleringer JR, Phillips SL, Schuster WSF, Sandquist DR 1991. Differential utilization of summer rains by desert plants. Oecologia 88:430–34
    [Google Scholar]
  41. Ellsworth PZ, Williams DG 2007. Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant Soil 291:93–107
    [Google Scholar]
  42. Evaristo J, Jasechko S, McDonnell JJ 2015. Global separation of plant transpiration from groundwater and streamflow. Nature 525:91–94
    [Google Scholar]
  43. Evaristo J, McDonnell JJ 2017. Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis. Sci. Rep. 7:44110
    [Google Scholar]
  44. Farquhar GD, Cernusak LA 2005. On the isotopic composition of leaf water in the non-steady state. Funct. Plant Biol. 32:293–303
    [Google Scholar]
  45. Fiorella RP, Bares R, Lin JC, Ehleringer JR, Bowen GJ 2018a. Detection and variability of combustion-derived vapor in an urban basin. Atmos. Chem. Phys. 18:8529–47
    [Google Scholar]
  46. Fiorella RP, Poulsen CJ, Matheny AM 2018b. Seasonal patterns of water cycling in a deep, continental mountain valley inferred from stable water vapor isotopes. J. Geophys. Res. Atmos. 123:7271–91
    [Google Scholar]
  47. Fiorella RP, Poulsen CJ, Zolá RSP, Barnes JB, Tabor CR, Ehlers TA 2015. Spatiotemporal variability of modern precipitation δ18O in the central Andes and implications for paleoclimate and paleoaltimetry estimates. J. Geophys. Res. Atmos. 120:4630–56
    [Google Scholar]
  48. Frankenberg C, Yoshimura K, Warneke T, Aben I, Butz A et al. 2009. Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground. Science 325:1374–77
    [Google Scholar]
  49. Galewsky J, Steen-Larsen HC, Field RD, Worden J, Risi C, Schneider M 2016. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev. Geophys. 54:809–65
    [Google Scholar]
  50. Gat JR 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 24:225–62
    [Google Scholar]
  51. Gat JR 2000. Atmospheric water balance—the isotopic perspective. Hydrol. Process. 14:1357–69
    [Google Scholar]
  52. Gat JR, Bowser CJ, Kendall C 1994. The contribution of evaporation from the Great Lakes to the continental atmosphere: estimate based on stable isotope data. Geophys. Res. Lett. 21:557–60
    [Google Scholar]
  53. Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA 2006. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–38
    [Google Scholar]
  54. Geris J, Tetzlaff D, McDonnell J, Anderson J, Paton G, Soulsby C 2015. Ecohydrological separation in wet, low energy northern environments? A preliminary assessment using different soil water extraction techniques. Hydrol. Process. 29:5139–52
    [Google Scholar]
  55. Gerten D, Hoff H, Bondeau A, Lucht W, Smith P, Zaehle S 2005. Contemporary “green” water flows: simulations with a dynamic global vegetation and water balance model. Phys. Chem. Earth 30:334–38
    [Google Scholar]
  56. Goldsmith GR, Muñoz‐Villers LE, Holwerda F, McDonnell JJ, Asbjornsen H, Dawson TE 2012. Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest. Ecohydrology 5:779–90
    [Google Scholar]
  57. Good SP, Kennedy CD, Stalker JC, Chesson LA, Valenzuela LO et al. 2014a. Patterns of local and non-local water resource use across the western United States determined via stable isotope intercomparisons. Water Resour. Res. 50:8034–49
    [Google Scholar]
  58. Good SP, Mallia DV, Lin JC, Bowen GJ 2014b. Stable isotope analysis of precipitation samples obtained via crowdsourcing reveals the spatiotemporal evolution of Superstorm Sandy. PLOS ONE 9:e91117
    [Google Scholar]
  59. Good SP, Noone D, Bowen GJ 2015a. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349:175–77
    [Google Scholar]
  60. Good SP, Noone D, Kurita N, Benetti M, Bowen GJ 2015b. D/H isotope ratios in the global hydrologic cycle. Geophys. Res. Lett. 42:5042–50
    [Google Scholar]
  61. Good SP, Soderberg K, Wang L, Caylor KK 2012. Uncertainties in the assessment of the isotopic composition of surface fluxes: a direct comparison of techniques using laser-based water vapor isotope analyzers. J. Geophys. Res. 117:D15D15301
    [Google Scholar]
  62. Gorski G, Strong C, Good SP, Bares R, Ehleringer JR, Bowen GJ 2015. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere. PNAS 112:3247–52
    [Google Scholar]
  63. Hattermann FF, Krysanova V, Gosling SN, Dankers R, Daggupati P et al. 2017. Cross‐scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Clim. Change 141:561–76
    [Google Scholar]
  64. He Y, Risi C, Gao J, Masson-Delmotte V, Yao T et al. 2015. Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data and atmospheric general circulation modeling. J. Geophys. Res. Atmos. 120:3852–71
    [Google Scholar]
  65. Henderson AK, Shuman BN 2010. Differing controls on river- and lake-water hydrogen and oxygen isotopic values in the western United States. Hydrol. Process. 24:3894–906
    [Google Scholar]
  66. Henderson-Sellers A, Fischer M, Aleinov I, McGuffie K, Riley WJ et al. 2006. Stable water isotope simulation by current land-surface schemes: results of iPILPS Phase 1. Glob. Planet. Change 51:34–58
    [Google Scholar]
  67. Ingraham NL, Taylor BE 1991. Light stable isotope systematics of large-scale hydrologic regimes in California and Nevada. Water Resour. Res. 27:77–90
    [Google Scholar]
  68. Ishizaki Y, Yoshimura K, Kanae S, Kimoto M, Kurita N, Oki T 2012. Interannual variability of H218O in precipitation over the Asian monsoon region. J. Geophys. Res. 117:D16D16308
    [Google Scholar]
  69. Jameel Y, Brewer S, Good SP, Tipple BJ, Ehleringer JR, Bowen GJ 2016. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area. Water Resour. Res. 52:5891–910
    [Google Scholar]
  70. Jasechko S, Birks SJ, Gleeson T, Wada Y, Fawcett PJ et al. 2014. The pronounced seasonality of global groundwater recharge. Water Resour. Res. 50:8845–67
    [Google Scholar]
  71. Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ 2013. Terrestrial water fluxes dominated by transpiration. Nature 496:347–50
    [Google Scholar]
  72. Kaseke KF, Wang L, Wanke H, Tian C, Lanning M, Jiao W 2018. Precipitation origins and key drivers of precipitation isotope (18O, 2H, and 17O) compositions over Windhoek. J. Geophys. Res. Atmos. 123:7311–30
    [Google Scholar]
  73. Kendall C, McDonnell JJ, eds. 1998. Isotope Tracers in Catchment Hydrology Amsterdam: Elsevier
  74. Kennedy CD, Bowen GJ, Ehleringer JR 2011. Temporal variation of oxygen isotope ratios (δ18O) in drinking water: implications for specifying location of origin with human scalp hair. Forensic Sci. Int. 208:156–66
    [Google Scholar]
  75. Konecky B, Comas-Bru L, Dassié E, DeLong K, Partin J 2018. Piecing together the big picture on water and climate. Eos 99: https://doi.org/10.1029/2018EO095283
    [Google Scholar]
  76. Kug J-S, Jin F-F, An S-I 2009. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J. Climate 22:1499–515
    [Google Scholar]
  77. Kurita N 2013. Water isotopic variability in response to mesoscale convective system over the tropical ocean. J. Geophys. Res. Atmos. 118:10376–90
    [Google Scholar]
  78. Kurita N, Horikawa M, Kanamori H, Fujinami H, Kumagai To et al. 2018. Interpretation of El Niño–Southern Oscillation‐related precipitation anomalies in north‐western Borneo using isotopic tracers. Hydrol. Process. 32:2176–86
    [Google Scholar]
  79. Kurita N, Ichiyanagi K, Matsumoto J, Yamanaka MD, Ohata T 2009. The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J. Geochem. Explor. 102:113–22
    [Google Scholar]
  80. Lai CT, Ehleringer JR, Bond BJ, Paw U KT 2006. Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the δ18O of water vapour in Pacific Northwest coniferous forests. Plant Cell Environ 29:77–94
    [Google Scholar]
  81. Larkin NK, Harrison DE 2005. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett. 32:L16705
    [Google Scholar]
  82. Lawrence DM, Thornton PE, Oleson KW, Bonan GB 2007. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land–atmosphere interaction. J. Hydrometeorol. 8:862–80
    [Google Scholar]
  83. Lee J-E, Fung I 2008. “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Process. 22:1–8
    [Google Scholar]
  84. Li S, Levin NE, Chesson LA 2015. Continental scale variation in 17O-excess of meteoric waters in the United States. Geochim. Cosmochim. Acta 164:110–26
    [Google Scholar]
  85. Lian X, Piao S, Huntingford C, Li Y, Zeng Z et al. 2018. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Climate Change 8:640–46
    [Google Scholar]
  86. Lis G, Wassenaar LI, Hendry MJ 2007. High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal. Chem. 80:287–93
    [Google Scholar]
  87. Liu Y, Cobb KM, Song H, Li Q, Li CY et al. 2017. Recent enhancement of central Pacific El Nino variability relative to last eight centuries. Nat. Commun. 8:15386
    [Google Scholar]
  88. Liu Z, Kennedy CD, Bowen GJ 2011. Pacific/North American teleconnection controls on precipitation isotope ratios across the contiguous United States. Earth Planet. Sci. Lett. 310:319–26
    [Google Scholar]
  89. Liu Z, Yoshimura K, Bowen GJ, Buenning NH, Risi C et al. 2014a. Paired oxygen isotope records reveal modern North American atmospheric dynamics during the Holocene. Nat. Commun. 5:3701
    [Google Scholar]
  90. Liu Z, Yoshimura K, Bowen GJ, Welker JM 2014b. Pacific North American teleconnection controls on precipitation isotopes (δ18O) across the contiguous United States and adjacent regions: a GCM-based analysis. J. Climate 27:1046–61
    [Google Scholar]
  91. Long D, Longuevergne L, Scanlon BR 2014. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 50:1131–51
    [Google Scholar]
  92. Martens B, Miralles DG, Lievens H, van der Schalie R, de Jeu RAM et al. 2017. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model. Dev. 10:1903–25
    [Google Scholar]
  93. Martin NJ, Conroy JL, Noone D, Cobb KM, Konecky BL, Rea S 2018. Seasonal and ENSO influences on the stable isotopic composition of Galápagos precipitation. J. Geophys. Res. Atmos. 123:261–75
    [Google Scholar]
  94. Maxwell RM, Condon LE 2016. Connections between groundwater flow and transpiration partitioning. Science 353:377–80
    [Google Scholar]
  95. McDonnell JJ 2014. The two water worlds hypothesis: ecohydrological separation of water between streams and trees. ? WIREs Water 1:323–29
    [Google Scholar]
  96. Midhun M, Lekshmy PR, Ramesh R, Yoshimura K, Sandeep KK et al. 2018. The effect of monsoon circulation on the stable isotopic composition of rainfall. J. Geophys. Res. Atmos. 123:5205–21
    [Google Scholar]
  97. Miralles DG, Jiménez C, Jung M, Michel D, Ershadi A et al. 2016. The WACMOS-ET project—Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 20:823–42
    [Google Scholar]
  98. Moore M, Kuang Z, Blossey PN 2014. A moisture budget perspective of the amount effect. Geophys. Res. Lett. 41:1329–35
    [Google Scholar]
  99. Myhre G, Forster PM, Samset BH, Hodnebrog Ø, Sillmann J et al. 2017. PDRMIP: a precipitation driver and response model intercomparison project—protocol and preliminary results. Bull. Am. Meteorol. Soc. 98:1185–98
    [Google Scholar]
  100. O'Driscoll MA, DeWalle DR, McGuire KJ, Gburek WJ 2005. Seasonal 18O variations and groundwater recharge for three landscape types in central Pennsylvania, USA. J. Hydrol. 303:108–24
    [Google Scholar]
  101. Oerter EJ, Bowen G 2017. In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems. Ecohydrology 10:e1841
    [Google Scholar]
  102. Orlowski N, Pratt DL, McDonnell JJ 2016. Intercomparison of soil pore water extraction methods for stable isotope analysis. Hydrol. Process. 30:3434–49
    [Google Scholar]
  103. Pauli JN, Newsome SD, Cook JA, Harrod C, Steffan SA et al. 2017. Opinion: why we need a centralized repository for isotopic data. PNAS 114:2997–3001
    [Google Scholar]
  104. Pfahl S, Wernli H 2008. Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean. J. Geophys. Res. 113:D20D20104
    [Google Scholar]
  105. Putman AL, Feng X, Sonder LJ, Posmentier ES 2017. Annual variation in event-scale precipitation δ2H at Barrow, AK, reflects vapor source region. Atmos. Chem. Phys. 17:4627–39
    [Google Scholar]
  106. Risi C, Bony S, Vimeux F 2008a. Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res. 113:D19D19306
    [Google Scholar]
  107. Risi C, Bony S, Vimeux F, Descroix L, Ibrahim B et al. 2008b. What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. Geophys. Res. Lett. 35:L24808
    [Google Scholar]
  108. Risi C, Bony S, Vimeux F, Jouzel J 2010. Water-stable isotopes in the LMDZ4 general circulation model: model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records. J. Geophys. Res. 115:D12D12118
    [Google Scholar]
  109. Risi C, Noone D, Worden J, Frankenberg C, Stiller G et al. 2012a. Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopic observations: 2. Using isotopic diagnostics to understand the mid and upper tropospheric moist bias in the tropics and subtropics. J. Geophys. Res. 117:D5D05304
    [Google Scholar]
  110. Risi C, Noone D, Worden J, Frankenberg C, Stiller G et al. 2012b. Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. J. Geophys. Res. 117:D5D05303
    [Google Scholar]
  111. Rozanski K, Araguas-Araguas L, Gonfiantini R 1993. Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records PK Swart, KC Lohmann, J McKenzie, S Savin 1–36 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  112. Salati E, Dall'Olio A, Matsui E, Gat JR 1979. Recycling of water in the Amazon Basin: an isotopic study. Water Resour. Res. 15:1250–58
    [Google Scholar]
  113. Salmon OE, Shepson PB, Ren X, Collow M, Allison B et al. 2017. Urban emissions of water vapor in winter. J. Geophys. Res. Atmos. 122:9467–84
    [Google Scholar]
  114. Samuels-Crow KE, Galewsky J, Hardy DR, Sharp ZD, Worden J, Braun C 2014. Upwind convective influences on the isotopic composition of atmospheric water vapor over the tropical Andes. J. Geophys. Res. Atmos. 119:7051–63
    [Google Scholar]
  115. Schlesinger WH, Jasechko S 2014. Transpiration in the global water cycle. Agric. Forest Meteorol. 189:115–17
    [Google Scholar]
  116. Schmidt JC, Kraft JC, Tuzlak D, Walker A 2016. Fill Mead First: a technical assessment White Pap. 1 Utah State Univ. Quinney Coll. Nat. Resour., Cent. Colo. River Stud. Logan, Utah: https://qcnr.usu.edu/wats/colorado_river_studies/files/documents/Fill_Mead_First_Analysis.pdf
  117. Schoenemann SW, Steig EJ, Ding Q, Markle BR, Schauer AJ 2014. Triple water‐isotopologue record from WAIS Divide, Antarctica: controls on glacial‐interglacial changes in 17Oexcess of precipitation. J. Geophys. Res. Atmos. 119:8741–63
    [Google Scholar]
  118. Simonin KA, Roddy AB, Link P, Apodaca R, Tu KP et al. 2013. Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables. Plant Cell Environ 36:2190–206
    [Google Scholar]
  119. Sodemann H, Schwierz C, Wernli H 2008. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. 113:D3D03107
    [Google Scholar]
  120. Soderberg K, Good SP, Wang L, Caylor K 2012. Stable isotopes of water vapor in the vadose zone: a review of measurement and modeling techniques. Vadose Zone J 11: https://doi.org/10.2136/vzj2011.0165
    [Google Scholar]
  121. Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR 2008. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res. 44:W02433
    [Google Scholar]
  122. Tan M 2014. Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Climate Dyn 42:1067–77
    [Google Scholar]
  123. Tharammal T, Bala G, Noone D 2017. Impact of deep convection on the isotopic amount effect in tropical precipitation. J. Geophys. Res. Atmos. 122:1505–23
    [Google Scholar]
  124. Thompson LG, Davis ME, Mosley-Thompson E, Beaudon E, Porter SE et al. 2017. Impacts of recent warming and the 2015/2016 El Niño on tropical Peruvian ice fields. J. Geophys. Res. Atmos. 122:12688–701
    [Google Scholar]
  125. Thompson LG, Mosley-Thompson E, Davis ME, Zagorodnov VS, Howat IM et al. 2013. Annually resolved ice core records of tropical climate variability over the past ∼1800 years. Science 340:945–50
    [Google Scholar]
  126. Tian L, Yao T, MacClune K, White JWC, Schilla A et al. 2007. Stable isotopic variations in west China: a consideration of moisture sources. J. Geophys. Res. 112:D10D10112
    [Google Scholar]
  127. Tipple BJ, Jameel Y, Chau TH, Mancuso CJ, Bowen GJ et al. 2017. Stable hydrogen and oxygen isotopes of tap water reveal structure of the San Francisco Bay Area's water system and adjustments during a major drought. Water Res 119:212–24
    [Google Scholar]
  128. Torri G, Ma D, Kuang Z 2017. Stable water isotopes and large-scale vertical motions in the tropics. J. Geophys. Res. Atmos. 122:3703–17
    [Google Scholar]
  129. Trenberth KE, Smith L, Qian T, Dai A, Fasullo J 2007. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 8:758–69
    [Google Scholar]
  130. Vinther BM, Johnsen SJ, Andersen KK, Clausen HB, Hansen AW 2003. NAO signal recorded in the stable isotopes of Greenland ice cores. Geophys. Res. Lett. 30:1387
    [Google Scholar]
  131. Volkmann TH, Haberer K, Gessler A, Weiler M 2016. High‐resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface. New Phytol 210:839–49
    [Google Scholar]
  132. Volkmann TH, Weiler M 2014. Continual in situ monitoring of pore water stable isotopes in the subsurface. Hydrol. Earth Syst. Sci. 18:1819–33
    [Google Scholar]
  133. Vörösmarty CJ, Sahagian D 2000. Anthropogenic disturbance of the terrestrial water cycle. AIBS Bull 50:753–65
    [Google Scholar]
  134. Vuille M, Werner M 2005. Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: observations and model results. Climate Dyn 25:401–13
    [Google Scholar]
  135. Wang C, Deser C, Yu J-Y, DiNezio P, Clement A 2017. El Niño and Southern Oscillation (ENSO): a review. Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment PW Glynn, DP Manzello, IC Enochs 85–106 Dordrecht, Neth.: Springer Neth.
    [Google Scholar]
  136. Wang K, Dickinson RE 2012. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev. Geophys. 50:RG2005
    [Google Scholar]
  137. Wang L, Good SP, Caylor KK, Cernusak LA 2012. Direct quantification of leaf transpiration isotopic composition. Agric. Forest Meteorol. 154:127–35
    [Google Scholar]
  138. Wang N, Thompson LG, Davis ME, Mosley-Thompson E, Tandong Y, Jianchen P 2003. Influence of variations in NAO and SO on air temperature over the northern Tibetan Plateau as recorded by δ18O in the Malan ice core. Geophys. Res. Lett. 30:2167
    [Google Scholar]
  139. Wang XF, Yakir D 2000. Using stable isotopes of water in evapotranspiration studies. Hydrol. Process. 14:1407–21
    [Google Scholar]
  140. Wang Y, Cheng H, Edwards RL, Kong X, Shao X et al. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090–93
    [Google Scholar]
  141. Wang-Erlandsson L, van der Ent RJ, Gordon LJ, Savenije HHG 2014. Contrasting roles of interception and transpiration in the hydrological cycle—Part 1: Temporal characteristics over land. Earth Syst. Dyn. 5:441–69
    [Google Scholar]
  142. Wei Z, Yoshimura K, Wang L, Miralles DG, Jasechko S, Lee X 2017. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44:2792–801
    [Google Scholar]
  143. Welp LR, Lee X, Griffis TJ, Wen X-F, Xiao W et al. 2012. A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer. Glob. Biogeochem. Cycles 26:GB3021
    [Google Scholar]
  144. West AG, February EC, Bowen GJ 2014. Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in ground water and tap water across South Africa. J. Geochem. Explor. 145:213–22
    [Google Scholar]
  145. Wong TE, Nusbaumer J, Noone DC 2017. Evaluation of modeled land‐atmosphere exchanges with a comprehensive water isotope fractionation scheme in version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 9:978–1001
    [Google Scholar]
  146. Worden J, Noone D, Bowman K, Beer R, Eldering A et al. 2007. Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445:528–32
    [Google Scholar]
  147. Wright JS, Sobel AH, Schmidt GA 2009. Influence of condensate evaporation on water vapor and its stable isotopes in a GCM. Geophys. Res. Lett. 36:L12804
    [Google Scholar]
  148. Yang H, Johnson KR, Griffiths ML, Yoshimura K 2016. Interannual controls on oxygen isotope variability in Asian monsoon precipitation and implications for paleoclimate reconstructions. J. Geophys. Res. Atmos. 121:8410–28
    [Google Scholar]
  149. Yang X, Davis ME, Acharya S, Yao T 2017. Asian monsoon variations revealed from stable isotopes in precipitation. Climate Dyn 51:2267–83
    [Google Scholar]
  150. Yao T, Masson-Delmotte V, Gao J, Yu W, Yang X et al. 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Rev. Geophys. 51:525–48
    [Google Scholar]
  151. Yu W, Yao T, Tian L, Ma Y, Wen R et al. 2015. Short-term variability in the dates of the Indian monsoon onset and retreat on the southern and northern slopes of the central Himalayas as determined by precipitation stable isotopes. Climate Dyn 47:159–72
    [Google Scholar]
  152. Zhang X, Zwiers FW, Hegerl GC 2007. Detection of human influence on twentieth-century precipitation trends. Nature 448:461–65
    [Google Scholar]
  153. Zhang Y, Peña-Arancibia JL, McVicar TR, Chiew FHS, Vaze J et al. 2016. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6:19124
    [Google Scholar]
  154. Zhao S, Hu H, Tian F, Tie Q, Wang L et al. 2017. Divergence of stable isotopes in tap water across China. Sci. Rep. 7:43653
    [Google Scholar]
  155. Zwart C, Munksgaard NC, Kurita N, Bird MI 2016. Stable isotopic signature of Australian monsoon controlled by regional convection. Quat. Sci. Rev. 151:228–35
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060220
Loading
/content/journals/10.1146/annurev-earth-053018-060220
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error