Skip to main content

Advertisement

Log in

Hypoxia induces the activation of hepatic stellate cells through the PVT1-miR-152-ATG14 signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Increasing studies have indicated that hypoxia serves as a pivotal microenvironmental factor that facilitates activation of hepatic stellate cells (HSCs). However, the mechanism by which hypoxia activates HSCs is not clear. Here, we demonstrated that plasmacytoma variant translocation 1 (PVT1) and autophagy were overexpressed in liver fibrotic specimens. In primary mouse HSCs, both PVT1 and autophagy were induced by hypoxia. Further study showed that hypoxia-induced autophagy depended on expression of PVT1 and miR-152 in HSCs. Luciferase reporter assay indicated that autophagy-related gene 14 (ATG14) was a direct target of miR-152. In addition, inhibition of autophagy by 3‐methyladenine and Beclin-1 siRNA impeded activation of HSCs cultured in 1% O2. Taken together, autophagy induction via the PVT1-miR-152-ATG14 signaling pathway contributes to activation of HSCs under hypoxia condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lai M, Afdhal NH (2019) Liver fibrosis determination. Gastroenterol Clin N Am 48:281–289. https://doi.org/10.1016/j.gtc.2019.02.002

    Article  Google Scholar 

  2. Parola M, Pinzani M (2019) Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 65:37–55. https://doi.org/10.1016/j.mam.2018.09.002

    Article  PubMed  CAS  Google Scholar 

  3. Tian Y, Deng H, Han L, Hu S, Qi X (2018) Hypoxia-inducible factor may induce the development of liver fibrosis in Budd-Chiari syndrome by regulating CD248/endosialin expression: a hypothesis. J Transl Int Med 6:66–69. https://doi.org/10.2478/jtim-2018-0018

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roth KJ, Copple BL (2015) Role of hypoxia-inducible factors in the development of liver fibrosis. Cell Mol Gastroenterol Hepatol 1:589–597. https://doi.org/10.1016/j.jcmgh.2015.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang Q, Xiang S, Liu Q, Gu T, Yao Y, Lu X (2018) PPARgamma antagonizes hypoxia-induced activation of hepatic stellate cell through cross mediating PI3K/AKT and cGMP/PKG signaling. PPAR Res 2018:6970407. https://doi.org/10.1155/2018/6970407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Corrado C, Costa V, Giavaresi G, Calabrese A, Conigliaro A, Alessandro R (2019) Long non coding RNA H19: a new player in hypoxia-induced multiple myeloma cell dissemination. Int J Mol Sci. https://doi.org/10.3390/ijms20040801

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ren Y, Huang W, Weng G, Cui P, Liang H, Li Y (2019) LncRNA PVT1 promotes proliferation, invasion and epithelial-mesenchymal transition of renal cell carcinoma cells through downregulation of miR-16-5p. Onco Targets Ther 12:2563–2575. https://doi.org/10.2147/OTT.S190239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Huang XM, Shi SS, Jian TM, Tang DR, Wu T, Sun FY (2019) LncRNA PVT1 knockdown affects proliferation and apoptosis of uveal melanoma cells by inhibiting EZH2. Eur Rev Med Pharmacol Sci 23:2880–2887. https://doi.org/10.26355/eurrev_201904_17566

    Article  PubMed  Google Scholar 

  9. Gharib E, Anaraki F, Baghdar K, Ghavidel P, Sadeghi H, Nasrabadi PN, Peyravian N, Aghdaei HA, Zali MR, Mojarad EN (2019) Investigating the diagnostic performance of HOTTIP, PVT1, and UCA1 long noncoding RNAs as a predictive panel for the screening of colorectal cancer patients with lymph node metastasis. J Cell Biochem. https://doi.org/10.1002/jcb.28739

    Article  PubMed  Google Scholar 

  10. Han Y, Li X, Yan J, Ma C, Zheng X, Zhang J, Zhang D, Meng C, Zhang Z, Ji X, He F (2019) Knockdown of LncRNA PVT1 inhibits glioma progression by regulating miR-424 expression. Oncol Res. https://doi.org/10.3727/096504018X15424939990246

    Article  PubMed  Google Scholar 

  11. Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, Xue C, Ren F, Ren Z, Li J, Liu L, Duan Z, Cui G, Sun R (2019) Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer 18:33. https://doi.org/10.1186/s12943-019-0947-9

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang L, Peng X, Jin H, Liu J (2019) Long non-coding RNA PVT1 promotes autophagy as ceRNA to target ATG3 by sponging microRNA-365 in hepatocellular carcinoma. Gene 697:94–102. https://doi.org/10.1016/j.gene.2019.02.036

    Article  PubMed  CAS  Google Scholar 

  13. Yang Q, Yu Y, Sun Z, Pan Y (2018) Long non-coding RNA PVT1 promotes cell proliferation and invasion through regulating miR-133a in ovarian cancer. Biomed Pharmacother 106:61–67. https://doi.org/10.1016/j.biopha.2018.06.112

    Article  PubMed  CAS  Google Scholar 

  14. Liu C, Jin J, Liang D, Gao Z, Zhang Y, Guo T, He Y (2018) Long noncoding RNA PVT1 as a novel predictor of metastasis, clinicopathological characteristics and prognosis in human cancers: a meta-analysis. Pathol Oncol Res. https://doi.org/10.1007/s12253-018-0451-3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen L, Han X, Hu Z, Chen L (2019) The PVT1/miR-216b/Beclin-1 regulates cisplatin sensitivity of NSCLC cells via modulating autophagy and apoptosis. Cancer Chemother Pharmacol 83:921–931. https://doi.org/10.1007/s00280-019-03808-3

    Article  PubMed  CAS  Google Scholar 

  16. Liu E, Liu Z, Zhou Y, Mi R, Wang D (2015) Overexpression of long non-coding RNA PVT1 in ovarian cancer cells promotes cisplatin resistance by regulating apoptotic pathways. Int J Clin Exp Med 8:20565–20572

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhang XW, Liu L, Zhang XZ, Bo P (2017) Kanglaite inhibits the expression of drug resistance genes through suppressing PVT1 in cisplatin-resistant gastric cancer cells. Exp Ther Med 14:1789–1794. https://doi.org/10.3892/etm.2017.4650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ping G, Xiong W, Zhang L, Li Y, Zhang Y, Zhao Y (2018) Silencing long noncoding RNA PVT1 inhibits tumorigenesis and cisplatin resistance of colorectal cancer. Am J Transl Res 10:138–149

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Wu D, Li Y, Zhang H, Hu X (2017) Knockdown of Lncrna PVT1 enhances radiosensitivity in non-small cell lung cancer by sponging Mir-195. Cell Physiol Biochem 42:2453–2466. https://doi.org/10.1159/000480209

    Article  PubMed  CAS  Google Scholar 

  20. Zheng J, Yu F, Dong P, Wu L, Zhang Y, Hu Y, Zheng L (2016) Long non-coding RNA PVT1 activates hepatic stellate cells through competitively binding microRNA-152. Oncotarget 7:62886–62897. https://doi.org/10.18632/oncotarget.11709

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ruart M, Chavarria L, Camprecios G, Suarez-Herrera N, Montironi C, Guixe-Muntet S, Bosch J, Friedman SL, Garcia-Pagan JC, Hernandez-Gea V (2019) Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol 70:458–469. https://doi.org/10.1016/j.jhep.2018.10.015

    Article  PubMed  CAS  Google Scholar 

  22. Tan S, Lu Y, Xu M, Huang X, Liu H, Jiang J, Wu B (2019) beta-Arrestin1 enhances liver fibrosis through autophagy-mediated Snail signaling. FASEB J 33:2000–2016. https://doi.org/10.1096/fj.201800828RR

    Article  PubMed  CAS  Google Scholar 

  23. Li R, Wang LZ, Du JH, Zhao L, Yao Y (2018) Autophagy activation and the mechanism of retinal microvascular endothelial cells in hypoxia. Int J Ophthalmol 11:567–574. https://doi.org/10.18240/ijo.2018.04.05

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chang W, Yang M, Song L, Shen K, Wang H, Gao X, Li M, Niu W, Qin X (2014) Isolation and culture of hepatic stellate cells from mouse liver. Acta Biochim Biophys Sin (Shanghai) 46:291–298. https://doi.org/10.1093/abbs/gmt143

    Article  CAS  Google Scholar 

  25. Zhang K, Han X, Zhang Z, Zheng L, Hu Z, Yao Q, Cui H, Shu G, Si M, Li C, Shi Z, Chen T, Han Y, Chang Y, Yao Z, Han T, Hong W (2017) The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFbeta and Notch pathways. Nat Commun 8:144. https://doi.org/10.1038/s41467-017-00204-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Han D, Li J, Wang H, Su X, Hou J, Gu Y, Qian C, Lin Y, Liu X, Huang M, Li N, Zhou W, Yu Y, Cao X (2017) Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66:1151–1164. https://doi.org/10.1002/hep.29270

    Article  PubMed  CAS  Google Scholar 

  27. Zhan L, Huang C, Meng XM, Song Y, Wu XQ, Yang Y, Li J (2015) Hypoxia-inducible factor-1alpha in hepatic fibrosis: a promising therapeutic target. Biochimie 108:1–7. https://doi.org/10.1016/j.biochi.2014.10.013

    Article  PubMed  CAS  Google Scholar 

  28. Ceni E, Mello T, Polvani S, Vasseur-Cognet M, Tarocchi M, Tempesti S, Cavalieri D, Beltrame L, Marroncini G, Pinzani M, Milani S, Galli A (2017) The orphan nuclear receptor COUP-TFII coordinates hypoxia-independent proangiogenic responses in hepatic stellate cells. J Hepatol 66:754–764. https://doi.org/10.1016/j.jhep.2016.11.003

    Article  PubMed  CAS  Google Scholar 

  29. Novo E, Povero D, Busletta C, Paternostro C, di Bonzo LV, Cannito S, Compagnone A, Bandino A, Marra F, Colombatto S, David E, Pinzani M, Parola M (2012) The biphasic nature of hypoxia-induced directional migration of activated human hepatic stellate cells. J Pathol 226:588–597. https://doi.org/10.1002/path.3005

    Article  PubMed  CAS  Google Scholar 

  30. Kim KM, Han CY, Kim JY, Cho SS, Kim YS, Koo JH, Lee JM, Lim SC, Kang KW, Kim JS, Hwang SJ, Ki SH, Kim SG (2018) Galpha12 overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting autophagy in hepatic stellate cells. J Hepatol 68:493–504. https://doi.org/10.1016/j.jhep.2017.10.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Nieminen T, Scott TA, Lin FM, Chen Z, Yla-Herttuala S, Morris KV (2018) Long non-coding RNA modulation of VEGF-A during hypoxia. Noncoding RNA. https://doi.org/10.3390/ncrna4040034

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huang F, Chen W, Peng J, Li Y, Zhuang Y, Zhu Z, Shao C, Yang W, Yao H, Zhang S (2018) LncRNA PVT1 triggers cyto-protective autophagy and promotes pancreatic ductal adenocarcinoma development via the miR-20a-5p/ULK1 Axis. Mol Cancer 17:98. https://doi.org/10.1186/s12943-018-0845-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tian Z, Cao S, Li C, Xu M, Wei H, Yang H, Sun Q, Ren Q, Zhang L (2019) LncRNA PVT1 regulates growth, migration, and invasion of bladder cancer by miR-31/CDK1. J Cell Physiol 234:4799–4811. https://doi.org/10.1002/jcp.27279

    Article  PubMed  CAS  Google Scholar 

  34. Wiegering A, Ruther U, Gerhardt C (2019) The role of primary cilia in the crosstalk between the ubiquitin(-)proteasome system and autophagy. Cells. https://doi.org/10.3390/cells8030241

    Article  PubMed  PubMed Central  Google Scholar 

  35. Abdul Rahim SA, Dirkse A, Oudin A, Schuster A, Bohler J, Barthelemy V, Muller A, Vallar L, Janji B, Golebiewska A, Niclou SP (2017) Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A. Br J Cancer 117:813–825. https://doi.org/10.1038/bjc.2017.263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chen Y, Henson ES, Xiao W, Huang D, McMillan-Ward EM, Israels SJ, Gibson SB (2016) Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia. Autophagy 12:1029–1046. https://doi.org/10.1080/15548627.2016.1164357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Allaire M, Rautou PE, Codogno P, Lotersztajn S (2019) Autophagy in liver diseases: time for translation? J Hepatol 70:985–998. https://doi.org/10.1016/j.jhep.2019.01.026

    Article  PubMed  Google Scholar 

  38. Liu Y, Bi Y, Mo C, Zeng T, Huang S, Gao L, Sun X, Lv Z (2019) Betulinic acid attenuates liver fibrosis by inducing autophagy via the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. J Nat Med 73:179–189. https://doi.org/10.1007/s11418-018-1262-2

    Article  PubMed  CAS  Google Scholar 

  39. Song YX, Sun JX, Zhao JH, Yang YC, Shi JX, Wu ZH, Chen XW, Gao P, Miao ZF, Wang ZN (2017) Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion. Nat Commun 8:289. https://doi.org/10.1038/s41467-017-00304-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Alessio E, Buson L, Chemello F, Peggion C, Grespi F, Martini P, Massimino ML, Pacchioni B, Millino C, Romualdi C, Bertoli A, Scorrano L, Lanfranchi G, Cagnin S (2019) Single cell analysis reveals the involvement of the long non-coding RNA Pvt1 in the modulation of muscle atrophy and mitochondrial network. Nucleic Acids Res 47:1653–1670. https://doi.org/10.1093/nar/gkz007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Li Z, Hao S, Yin H, Gao J, Yang Z (2016) Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice. Behav Brain Res 305:265–277. https://doi.org/10.1016/j.bbr.2016.03.023

    Article  PubMed  Google Scholar 

  42. Ma Y, Wang P, Xue Y, Qu C, Zheng J, Liu X, Ma J, Liu Y (2017) PVT1 affects growth of glioma microvascular endothelial cells by negatively regulating miR-186. Tumour Biol 39:1010428317694326. https://doi.org/10.1177/1010428317694326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the Shanghai Municipal Natural Science Foundation (Grant No. 17ZR1426100), the National Natural Science Foundation of China (Grant Nos. 81970527/H0317, 81500458/H0317, 81873576/H0317, 81000176/H0317), Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19H030005), Wenzhou Municipal Science and technology Bureau (Grant No. Y20180138), the Key Project of the Science & Technology Development Fund of Nanjing Medical University (Grant No. 2016NJMUZD092), and Science & Technology Commission of Shanghai Songjiang (Grant No. 16SJGG38).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjian Zheng or Ping Xu.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Dong, B., Dong, P. et al. Hypoxia induces the activation of hepatic stellate cells through the PVT1-miR-152-ATG14 signaling pathway. Mol Cell Biochem 465, 115–123 (2020). https://doi.org/10.1007/s11010-019-03672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-019-03672-y

Keywords

Navigation