Skip to main content

Advertisement

Log in

Conjugated Polymers as Hole Transporting Materials for Solar Cells

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In principle, conjugated polymers can work as electron donors and thus as low-cost p-type organic semiconductors to transport holes in photovoltaic devices. With the booming interests in high-efficiency and low-cost solar cells to tackle global climate change and energy shortage, hole transporting materials (HTMs) based on conjugated polymers have received increasing attention in the past decade. In this perspective, recent advances in HTMs for a range of photovoltaic devices including dye-sensitized solar cells (DSSCs), perovskite solar cells (PSCs), and silicon (Si)/organic heterojunction solar cells (HSCs) are summarized and perspectives on their future development are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chiang, C. K.; Fincher Jr, C.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett.1977, 39, 1098–1101.

    Article  CAS  Google Scholar 

  2. Venema, L. Fathers of electronic revolution are rewarded. Nature2000, 407, 662.

    Article  CAS  PubMed  Google Scholar 

  3. Jia, J. C.; Cai, W. Q.; Liu, S. J.; Huang, F.; Cao, Y. Synthesis of cross-linkable hole-transporting materials based on Diels-Alder reaction and their application in polymer light-emitting diodes. Acta Polymerica Sinica (in Chinese) 2017, 1169–1177.

    Google Scholar 

  4. Zhang, K.; Huang, F.; Cao, Y. Water/alcohol soluble conjugated polymer interlayer materials and their application in solution processed multilayer organic optoelectronic devices. Acta Polymerica Sinica (in Chinese) 2017, 1400–1414.

    Google Scholar 

  5. Xiao, Y. J.; He, Q. N.; Zhou, H. Y.; Xu, H. T.; Tan, L. C.; Chen, Y. W. In situ polymerization of PEDOT:pi-conjugated polyelectrolyte and application as hole transport layer in polymer solar cells. Acta Polymerica Sinica (in Chinese) 2018, 257–265.

    Google Scholar 

  6. Zhang, K.; Liu, X. Y.; Xu, B. W.; Cui, Y.; Sun, M. L.; Hou, J. H. High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer. Chinese J. Polym. Sci.2017, 35, 219–229.

    Article  CAS  Google Scholar 

  7. Zhang, W.; Cheng, Y.; Yin, X.; Liu, B. Solid-state dye-sensitized solar cells with conjugated polymers as hole-transporting materials. Macromol. Chem. Phys.2011, 212, 15–23.

    Article  CAS  Google Scholar 

  8. Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G. Electrolytes in dye-sensitized solar cells. Chem. Rev.2015, 115, 2136–2173.

    Article  CAS  PubMed  Google Scholar 

  9. Calio, L.; Kazim, S.; Grätzel, M.; Ahmad, S. Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed.2016, 55, 14522–14545.

    Article  CAS  Google Scholar 

  10. Bakr, Z. H.; Wali, Q.; Fakharuddin, A.; Schmidt-Mende, L.; Brown, T. M.; Jose, R. Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy2017, 34, 271–305.

    Article  CAS  Google Scholar 

  11. Rakstys, K.; Igci, C.; Nazeeruddin, M. K. Efficiency vs stability: dopant-free hole transporting materials towards stabilized perovskite solar cells. Chem. Sci.2019, 10, 6748–6769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao, P.; Yang, Z.; He, J.; Yu, J.; Liu, P.; Zhu, J.; Ge, Z.; Ye, J. Dopant-free and carrier-selective heterocontacts for silicon solar cells: recent advances and perspectives. Adv. Sci.2018, 5, 1700547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lu, L. Y.; Zheng, T. Y.; Wu, Q. H.; Schneider, A. M.; Zhao, D. L.; Yu, L. P. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev.2015, 115, 12666–12731.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, J. W.; Cao, Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res.2009, 42, 1709–1718.

    Article  CAS  PubMed  Google Scholar 

  15. O’regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature1991, 353, 737–740.

    Article  Google Scholar 

  16. Hamann, T. W.; Ondersma, J. W. Dye-sensitized solar cell redox shuttles. Energy Environ. Sci.2011, 4, 370–381.

    Article  CAS  Google Scholar 

  17. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem.2014, 6, 242–247.

    Article  CAS  PubMed  Google Scholar 

  18. Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J. I.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun.2015, 51, 15894–15897.

    Article  CAS  Google Scholar 

  19. Zhang, L.; Yang, X.; Wang, W.; Gurzadyan, G. G.; Li, J.; Li, X.; An, J.; Yu, Z.; Wang, H.; Cai, B. 13.6% Efficient organic dye-sensitized solar cells by minimizing energy losses of the excited state. ACS Energy Lett.2019, 4, 943–951.

    Article  CAS  Google Scholar 

  20. Bach, U.; Lupo, D.; Comte, P.; Moser, J.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature1998, 395, 583–585.

    Article  CAS  Google Scholar 

  21. Murakoshi, K.; Kogure, R.; Wada, Y.; Yanagida, S. Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer. Chem. Lett.1997, 26, 471–472.

    Article  Google Scholar 

  22. Tennakone, K.; Kumara, G.; Kumarasinghe, A.; Wijayantha, K.; Sirimanne, P. A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond. Sci. Technol.1995, 10, 1689–1693.

    Article  Google Scholar 

  23. O’Regan, B.; Schwartz, D. T. Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL ‘NCS/CuSCN: initiation and potential mechanisms. Chem. Mater.1998, 10, 1501–1509.

    Article  Google Scholar 

  24. Kitamura, T.; Maitani, M.; Matsuda, M.; Wada, Y.; Yanagida, S. Improved solid-state dye solar cells with polypyrrole using a carbon-based counter electrode. Chem. Lett.2001, 30, 1054–1055.

    Article  Google Scholar 

  25. Cervini, R.; Cheng, Y.; Simon, G. Solid-state Ru-dye solar cells using polypyrrole as a hole conductor. J. Phys. D: Appl. Phys.2003, 37, 13–20.

    Article  CAS  Google Scholar 

  26. Huang, W. S.; Humphrey, B. D.; MacDiarmid, A. G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem. Soc., Faraday Trans.1986, 82, 2385–2400.

    Article  CAS  Google Scholar 

  27. Kaneko, M.; Nakamura, H. Photoresponse of a liquid junction polyaniline film. J. Chem. Soc. Chem. Commun.1985, 346–347.

    Google Scholar 

  28. Tan, S.; Zhai, J.; Wan, M.; Jiang, L.; Zhu, D. Polyaniline as a hole transport material to prepare solid solar cells. Synth. Met.2003, 137, 1511–1512.

    Article  CAS  Google Scholar 

  29. Tan, S.; Zhai, J.; Xue, B.; Wan, M.; Meng, Q.; Li, Y.; Jiang, L.; Zhu, D. Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells. Langmuir2004, 20, 2934–2937.

    Article  CAS  PubMed  Google Scholar 

  30. Tan, S.; Zhai, J.; Wan, M.; Meng, Q.; Li, Y.; Jiang, L.; Zhu, D. Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells. J. Phys. Chem. B2004, 108, 18693–18697.

    Article  CAS  Google Scholar 

  31. Kim, H.-S.; Wamser, C. C. Photoelectropolymerization of aniline in a dye-sensitized solar cell. Photochem. Photobiol. Sci.2006, 5, 955–960.

    Article  CAS  PubMed  Google Scholar 

  32. Ameen, S.; Akhtar, M. S.; Kim, G. S.; Kim, Y. S.; Yang, O. B.; Shin, H. S. Plasma-enhanced polymerized aniline/TiO2 dye-sensitized solar cells. J. Alloys Compd.2009, 487, 382–386.

    Article  CAS  Google Scholar 

  33. Duan, Y.; Tang, Q.; Chen, Y.; Zhao, Z.; Lv, Y.; Hou, M.; Yang, P.; He, B.; Yu, L. Solid-state dye-sensitized solar cells from poly-(ethylene oxide)/polyaniline electrolytes with catalytic and hole-transporting characteristics. J. Mater. Chem. A2015, 3, 5368–5374.

    Article  CAS  Google Scholar 

  34. Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev.2009, 109, 5868–5923.

    Article  CAS  PubMed  Google Scholar 

  35. Gebeyehu, D.; Brabec, C.; Padinger, F.; Fromherz, T.; Spiekermann, S.; Vlachopoulos, N.; Kienberger, F.; Schindler, H.; Sariciftci, N. Solid state dye-sensitized TiO2 solar cells with poly-(3-octylthiophene) as hole transport layer. Synth. Met.2001, 121, 1549–1550.

    Article  CAS  Google Scholar 

  36. Kudo, N.; Honda, S.; Shimazaki, Y.; Ohkita, H.; Ito, S.; Benten, H. Improvement of charge injection efficiency in organic-inorganic hybrid solar cells by chemical modification of metal oxides with organic molecules. Appl. Phys. Lett.2007, 90, 183513.

    Article  CAS  Google Scholar 

  37. Lancelle-Beltran, E.; Prené, P.; Boscher, C.; Belleville, P.; Buvat, P.; Sanchez, C. All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency. Adv. Mater.2006, 18, 2579–2582.

    Article  CAS  Google Scholar 

  38. Zhu, R.; Jiang, C. Y.; Liu, B.; Ramakrishna, S. Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye. Adv. Mater.2009, 21, 994–1000.

    Article  CAS  Google Scholar 

  39. Jiang, K. J.; Manseki, K.; Yu, Y. H.; Masaki, N.; Suzuki, K.; Song, Y. L.; Yanagida, S. Photovoltaics based on hybridization of effective dye-sensitized titanium oxide and hole-conductive polymer P3HT. Adv. Funct. Mater.2009, 19, 2481–2485.

    Article  CAS  Google Scholar 

  40. Mor, G. K.; Kim, S.; Paulose, M.; Varghese, O. K.; Shankar, K.; Basham, J.; Grimes, C. A. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Lett.2009, 9, 4250–4257.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, W.; Zhu, R.; Li, F.; Wang, Q.; Liu, B. High-performance solid-state organic dye sensitized solar cells with P3HT as hole transporter. J. Phys. Chem. C2011, 115, 7038–7043.

    Article  CAS  Google Scholar 

  42. Yang, L.; Cappel, U. B.; Unger, E. L.; Karlsson, M.; Karlsson, K. M.; Gabrielsson, E.; Sun, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. Phys. Chem. Chem. Phys.2012, 14, 779–789.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Q.; Li, C.; Jiang, K.; Song, Y.; Pei, J. A high-efficiency solid-state dye-sensitized solar cell with P3HT polymer as a hole conductor and an assistant sensitizer. Particuology2014, 15, 71–76.

    Article  CAS  Google Scholar 

  44. Wu, J.; Yue, G.; Xiao, Y.; Ye, H.; Lin, J.; Huang, M. Application of a polymer heterojunction in dye-sensitized solar cells. Electrochim. Acta2010, 55, 5798–5802.

    Article  CAS  Google Scholar 

  45. Chen, W. C.; Lee, Y. H.; Chen, C. Y.; Kau, K. C.; Lin, L. Y.; Dai, C. A.; Wu, C. G.; Ho, K. C.; Wang, J. K.; Wang, L. Self-assembled all-conjugated block copolymer as an effective hole conductor for solid-state dye-sensitized solar cells. ACS Nano2014, 8, 1254–1262.

    Article  CAS  PubMed  Google Scholar 

  46. Chevrier, M.; Hawashin, H.; Richeter, S.; Mehdi, A.; Surin, M.; Lazzaroni, R.; Dubois, P.; Ratier, B.; Bouclé, J.; Clément, S. Well-designed poly(3-hexylthiophene) as hole transporting material: a new opportunity for solid-state dye-sensitized solar cells. Synth. Met.2017, 226, 157–163.

    Article  CAS  Google Scholar 

  47. Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater.2000, 12, 481–494.

    Article  CAS  Google Scholar 

  48. Saito, Y.; Fukuri, N.; Senadeera, R.; Kitamura, T.; Wada, Y.; Yanagida, S. Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor. Electrochem. Commun.2004, 6, 71–74.

    Article  CAS  Google Scholar 

  49. Fukuri, N.; Saito, Y.; Kubo, W.; Senadeera, G. R.; Kitamura, T.; Wada, Y.; Yanagida, S. Performance improvement of solid-state dye-sensitized solar cells fabricated using poly(3,4-ethylenedioxythiophene) and amphiphilic sensitizing dye. J. Electrochem. Soc.2004, 151, A1745-A1748.

    Article  CAS  Google Scholar 

  50. Xia, J.; Masaki, N.; Lira-Cantu, M.; Kim, Y.; Jiang, K.; Yanagida, S. Influence of doped anions on poly(3,4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitized solar cells. J. Am. Chem. Soc.2008, 130, 1258–1263.

    Article  CAS  PubMed  Google Scholar 

  51. Liu, X.; Zhang, W.; Uchida, S.; Cai, L.; Liu, B.; Ramakrishna, S. An efficient organic-dye-sensitized solar cell with in situ polymerized poly(3,4-ethylenedioxythiophene) as a hole-transporting material. Adv. Mater.2010, 22, E150-E155.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, J.; Vlachopoulos, N.; Hao, Y.; Holcombe, T. W.; Boschloo, G.; Johansson, E. M.; Grätzel, M.; Hagfeldt, A. Efficient blue-colored solid-state dye-sensitized solar cells: enhanced charge collection by using an in situ photoelectrochemically generated conducting polymer hole conductor. ChemPhysChem2016, 17, 1441–1445.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, J.; Vlachopoulos, N.; Jouini, M.; Johansson, M. B.; Zhang, X.; Nazeeruddin, M. K.; Boschloo, G.; Johansson, E. M.; Hagfeldt, A. Efficient solid-state dye sensitized solar cells: the influence of dye molecular structures for the in-situ photoelectrochemically polymerized PEDOT as hole transporting material. Nano Energy2016, 19, 455–470.

    Article  CAS  Google Scholar 

  54. National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html

  55. Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science2017, 356, 1376–1379.

    Article  CAS  PubMed  Google Scholar 

  56. Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature2019, 567, 511–515.

    Article  CAS  PubMed  Google Scholar 

  57. Chiang, C. H.; Nazeeruddin, M. K.; Grätzel, M.; Wu, C. G. The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ. Sci.2017, 10, 808–817.

    Article  CAS  Google Scholar 

  58. Ning, Z.; Tian, H. Triarylamine: a promising core unit for efficient photovoltaic materials. Chem. Commun.2009, 5483–5495.

    Google Scholar 

  59. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A.; Nazeeruddin, M. K. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon.2013, 7, 486–491.

    Article  CAS  Google Scholar 

  60. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater.2014, 13, 897–903.

    Article  CAS  PubMed  Google Scholar 

  61. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature2015, 517, 476–480.

    Article  CAS  PubMed  Google Scholar 

  62. Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun.2015, 6, 7747.

  63. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science2015, 348, 1234–1237.

    Article  CAS  PubMed  Google Scholar 

  64. Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, X. C.; Huang, J. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy2017, 2, 17102.

  65. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett.2013, 13, 1764–1769.

    Article  CAS  PubMed  Google Scholar 

  66. Wang, K.; Jin, Z.; Liang, L.; Bian, H.; Bai, D.; Wang, H.; Zhang, J.; Wang, Q.; Shengzhong, L. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat. Commun.2018, 9, 4544.

  67. Jost, M.; Bertram, T.; Koushik, D.; Marquez, J. A.; Verheijen, M. A.; Heinemann, M. D.; Kohnen, E.; Al-Ashouri, A.; Braunger, S.; Lang, F. 21.6%-Efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett.2019, 4, 583–590.

    Article  CAS  Google Scholar 

  68. Kim, Y.; Jung, E. H.; Kim, G.; Kim, D.; Kim, B. J.; Seo, J. Sequentially fluorinated PTAA polymers for enhancing Voc of high-performance perovskite solar cells. Adv. Energy Mater.2018, 8, 1801668.

    Article  CAS  Google Scholar 

  69. Coakley, K. M.; Srinivasan, B. S.; Ziebarth, J. M.; Goh, C.; Liu, Y.; McGehee, M. D. Enhanced hole mobility in regioregular polythiophene infiltrated in straight nanopores. Adv. Funct. Mater.2005, 15, 1927–1932.

    Article  CAS  Google Scholar 

  70. Bi, D.; Yang, L.; Boschloo, G.; Hagfeldt, A.; Johansson, E. M. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett.2013, 4, 1532–1536.

    Article  CAS  PubMed  Google Scholar 

  71. Edri, E.; Kirmayer, S.; Cahen, D.; Hodes, G. High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite. J. Phys. Chem. Lett.2013, 4, 897–902.

    Article  CAS  PubMed  Google Scholar 

  72. Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H. L.; Jen, A. K. Y.; Snaith, H. J. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett.2013, 13, 3124–3128.

    Article  CAS  PubMed  Google Scholar 

  73. Conings, B.; Baeten, L.; De, Dobbelaere C.; D’Haen, J.; Manca, J.; Boyen, H. G. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater.2014, 26, 2041–2046.

    Article  CAS  PubMed  Google Scholar 

  74. Lu, H.; Ma, Y.; Gu, B.; Tian, W.; Li, L. Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. J. Mater. Chem. A2015, 3, 16445–16452.

    Article  CAS  Google Scholar 

  75. Abbas, H. A.; Kottokkaran, R.; Ganapathy, B.; Samiee, M.; Zhang, L.; Kitahara, A.; Noack, M.; Dalal, V. L. High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Mater.2015, 3, 016105.

  76. Heo, J. H.; Im, S. H. CH3NH3PbI3/poly-3-hexylthiophen perovskite mesoscopic solar cells: Performance enhancement by Li-assisted hole conduction. Phys. Status Solidi RRL2014, 8, 816–821.

    Article  CAS  Google Scholar 

  77. Guo, Y.; Liu, C.; Inoue, K.; Harano, K.; Tanaka, H.; Nakamura, E. Enhancement in the efficiency of an organic-inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer. J. Mater. Chem. A2014, 2, 13827–13830.

    Article  CAS  Google Scholar 

  78. Bi, H.; Zhang, Y. Influence of the additives in poly(3-hexylthiophene) hole transport layer on the performance of perovskite solar cells. Mater. Lett.2015, 161, 767–769.

    Article  CAS  Google Scholar 

  79. Chen, H.; Pan, X.; Liu, W.; Cai, M.; Kou, D.; Huo, Z.; Fang, X.; Dai, S. Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material. Chem. Commun.2013, 49, 7277–7279.

    Article  CAS  Google Scholar 

  80. Cai, M.; Tiong, V. T.; Hreid, T.; Bell, J.; Wang, H. An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. J. Mater. Chem. A2015, 3, 2784–2793.

    Article  CAS  Google Scholar 

  81. Xiao, J.; Shi, J.; Liu, H.; Xu, Y.; Lv, S.; Luo, Y.; Li, D.; Meng, Q.; Li, Y. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater.2015, 5, 1401943.

  82. Habisreutinger, S. N.; Leijtens, T.; Eperon, G. E.; Stranks, S. D.; Nicholas, R. J.; Snaith, H. J. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett.2014, 14, 5561–5568.

    Article  CAS  PubMed  Google Scholar 

  83. Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Hole-transporting materials in inverted planar perovskite solar cells. Adv. Energy Mater.2016, 6, 1600474.

    Article  CAS  Google Scholar 

  84. Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater.2013, 25, 3727–3732.

    Article  CAS  PubMed  Google Scholar 

  85. Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun.2013, 4, 2761.

  86. Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater.2014, 26, 6503–6509.

    Article  CAS  PubMed  Google Scholar 

  87. You, J.; Yang, Y.; Hong, Z.; Song, T. B.; Meng, L.; Liu, Y.; Jiang, C.; Zhou, H.; Chang, W. H.; Li, G. Moisture assisted perovite film growth for high performance solar cells. Appl. Phys. Lett.2014, 105, 183902.

    Article  CAS  Google Scholar 

  88. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci.2015, 8, 1602–1608.

    Article  CAS  Google Scholar 

  89. de Jong, M.; van Ijzendoorn, L.; de Voigt, M. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett.2000, 77, 2255–2257.

    Article  Google Scholar 

  90. Hou, F.; Su, Z.; Jin, F.; Yan, X.; Wang, L.; Zhao, H.; Zhu, J.; Chu, B.; Li, W. Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale2015, 7, 9427–9432.

    Article  CAS  PubMed  Google Scholar 

  91. Sung, H.; Ahn, N.; Jang, M. S.; Lee, J. K.; Yoon, H.; Park, N. G.; Choi, M. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater.2016, 6, 1501873.

  92. Wang, Z. K.; Gong, X.; Li, M.; Hu, Y.; Wang, J. M.; Ma, H.; Liao, L. S. Induced crystallization of perovskites by a perylene underlayer for high-performance solar cells. ACS Nano2016, 10, 5479–5489.

    Article  CAS  PubMed  Google Scholar 

  93. Sailor, M. J.; Ginsburg, E. J.; Gorman, C. B.; Kumar, A.; Grubbs, R. H.; Lewis, N. S. Thin films of n-Si/poly-(CH3)3Si-cyclooctatetraene: conducting-polymer solar cells and layered structures. Science1990, 249, 1146–1149.

    Article  CAS  PubMed  Google Scholar 

  94. Williams, E. L.; Jabbour, G. E.; Wang, Q.; Shaheen, S. E.; Ginley, D. S.; Schiff, E. A. Conducting polymer and hydrogenated amorphous silicon hybrid solar cells. Appl. Phys. Lett.2005, 87, 223504.

    Article  CAS  Google Scholar 

  95. Wang, W.; Schiff, E. A. Polyaniline on crystalline silicon heterojunction solar cells. Appl. Phys. Lett.2007, 91, 133504.

    Article  CAS  Google Scholar 

  96. Avasthi, S.; Lee, S.; Loo, Y. L.; Sturm, J. C. Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells. Adv. Mater.2011, 23, 5762–5766.

    Article  CAS  PubMed  Google Scholar 

  97. Yu, P.; Tsai, C. Y.; Chang, J. K.; Lai, C. C.; Chen, P. H.; Lai, Y. C.; Tsai, P. T.; Li, M. C.; Pan, H. T.; Huang, Y. Y. 13% Efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano2013, 7, 10780–10787.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, Y.; Zu, F.; Lee, S. T.; Liao, L.; Zhao, N.; Sun, B. Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells. Adv. Energy Mater.2014, 4, 1300923.

    Article  CAS  Google Scholar 

  99. Liu, R.; Lee, S. T.; Sun, B. 13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater.2014, 26, 6007–6012.

    Article  CAS  PubMed  Google Scholar 

  100. Wu, S.; Cui, W.; Aghdassi, N.; Song, T.; Duhm, S.; Lee, S. T.; Sun, B. Nanostructured Si/organic heterojunction solar cells with high open-circuit voltage via improving junction quality. Adv. Funct. Mater.2016, 26, 5035–5041.

    Article  CAS  Google Scholar 

  101. He, J.; Gao, P.; Ling, Z.; Ding, L.; Yang, Z.; Ye, J.; Cui, Y. High-efficiency silicon/organic heterojunction solar cells with improved junction quality and interface passivation. ACS Nano2016, 10, 11525–11531.

    Article  CAS  PubMed  Google Scholar 

  102. He, J.; Hossain, M. A.; Lin, H.; Wang, W.; Karuturi, S. K.; Hoex, B.; Ye, J.; Gao, P.; Bullock, J.; Wan, Y. 15% Efficiency ultrathin silicon solar cells with fluorine-doped titanium oxide and chemically tailored poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) as asymmetric heterocontact. ACS Nano2019, 13, 6356–6362.

    Article  CAS  PubMed  Google Scholar 

  103. Yu, J.; Liao, M.; Yan, D.; Wan, Y.; Lin, H.; Wang, Z.; Gao, P.; Zeng, Y.; Yan, B.; Ye, J. Activating and optimizing evaporation-processed magnesium oxide passivating contact for silicon solar cells. Nano Energy2019, 62, 181–188.

    Article  CAS  Google Scholar 

  104. He, J.; Gao, P.; Yang, Z.; Yu, J.; Yu, W.; Zhang, Y.; Sheng, J.; Ye, J.; Amine, J. C.; Cui, Y. Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture-resistant capping layer. Adv. Mater.2017, 29, 1606321.

  105. He, J.; Wan, Y.; Gao, P.; Tang, J.; Ye, J. Over 16.7% Efficiency organic-silicon heterojunction solar cells with solution-processed dopant-free contacts for both polarities. Adv. Funct. Mater.2018, 28, 1802192.

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21774015 and 21975027), and NSFC-MAECI (No. 51861135202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Pan Zhang or Liang-Ti Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ti, D., Gao, K., Zhang, ZP. et al. Conjugated Polymers as Hole Transporting Materials for Solar Cells. Chin J Polym Sci 38, 449–458 (2020). https://doi.org/10.1007/s10118-020-2369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2369-y

Keywords

Navigation