Skip to main content
Log in

Synthesis and transformation of zero-dimensional Cs3BiX6 (X = Cl, Br) perovskite-analogue nanocrystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The unique structure of zero-dimensional (0D) perovskite-analogues has attracted a great amount of research interest in recent years. To date, the current compositional library of 0D perovskites is largely limited to the lead-based Cs4PbX6 (X = Cl, Br, and I) systems. In this work, we report a new synthesis of lead-free 0D Cs3BiX6 (X = Cl, Br) perovskite-analogue nanocrystals (NCs) with a uniform cubic shape. We observe a broad photoluminescence peak centered at 390 nm for the 0D Cs3BiCl6 NCs at low temperatures. This feature originates from a self-trapped exciton mechanism. In situ thermal stability studies show that Cs3BiX6 NCs remain stable upon heating up to 200 °C without crystal structural degradation. Moreover, we demonstrate that the Cs3BiX6 NCs can transform into other bismuth-based perovskite-analogues via facile anion exchange or metal ion insertion reactions. Our study presented here offers the opportunity for further understanding of the structure-property relationship of 0D perovskite-analogue materials, leading toward their future optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc.2009, 131, 6050–6051.

    CAS  Google Scholar 

  2. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett.2015, 15, 3692–3696.

    CAS  Google Scholar 

  3. Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc.2015, 137, 10276–10281.

    CAS  Google Scholar 

  4. Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P. D.; Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc.2015, 137, 16008–16011.

    CAS  Google Scholar 

  5. Nagaoka, Y.; Hills-Kimball, K.; Tan, R.; Li, R. P.; Wang, Z. W.; Chen, O. Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels. Adv. Mater.2017, 29, 1606666.

    Google Scholar 

  6. Liu, Z. K.; Bekenstein, Y.; Ye, X. C.; Nguyen, S. C.; Swabeck, J.; Zhang, D. D.; Lee, S. T.; Yang, P. D.; Ma, W. L.; Alivisatos, A. P. Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc.2017, 139, 5309–5312.

    CAS  Google Scholar 

  7. Cai, T.; Yang, H. J.; Hills-Kimball, K.; Song, J. P.; Zhu, H.; Hofman, E.; Zheng, W. W.; Rubenstein, B. M.; Chen, O. Synthesis of all-inorganic Cd-doped CsPbCl3 perovskite nanocrystals with dualwavelength emission. J. Phys. Chem. Lett.2018, 9, 7079–7084.

    CAS  Google Scholar 

  8. Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater.2015, 14, 636–642.

    CAS  Google Scholar 

  9. Que, M. D.; Dai, Z. H.; Yang, H. J.; Zhu, H.; Zong, Y. X.; Que, W. X.; Padture, N. P.; Zhou, Y. Y.; Chen, O. Quantum-dot-induced cesium-rich surface imparts enhanced stability to formamidinium lead iodide perovskite solar cells. ACS Energy Lett.2019, 4, 1970–1975.

    CAS  Google Scholar 

  10. Kroupa, D. M.; Roh, J. Y.; Milstein, T. J.; Creutz, S. E.; Gamelin, D. R. Quantum-cutting ytterbium-doped CsPb(Cl1-xBrx)3 perovskite thin films with photoluminescence quantum yields over 190%. ACS Energy Lett.2018, 3, 2390–2395.

    CAS  Google Scholar 

  11. Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano2015, 9, 4533–4542.

    CAS  Google Scholar 

  12. Zhu, H.; Cai, T.; Que, M. D.; Song, J. P.; Rubenstein, B. M.; Wang, Z. W.; Chen, O. Pressure-induced phase transformation and band-gap engineering of formamidinium lead iodide perovskite nanocrystals. J. Phys. Chem. Lett.2018, 9, 4199–4205.

    CAS  Google Scholar 

  13. Chen, Q. S.; Wu, J.; Ou, X. Y.; Huang, B. L.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X. W.; Han, S. Y.; Liang, L. L.; Yi, Z. G. et al. All-inorganic perovskite nanocrystal scintillators. Nature2018, 561, 88–93.

    CAS  Google Scholar 

  14. Zhou, Q. C.; Bai, Z. L.; Lu, W. G.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z. In situ fabrication of halide perovskite nanocrystal- embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater.2016, 28, 9163–9168.

    CAS  Google Scholar 

  15. Yang, H. J.; Zhang, Y.; Hills-Kimball, K.; Zhou, Y. Y.; Chen, O. Building bridges between halide perovskite nanocrystals and thin-film solar cells. Sustain. Energy Fuels2018, 2, 2381–2397.

    CAS  Google Scholar 

  16. Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of alpha-CsPbI3 perovskite for high-efficiency photovoltaics. Science2016, 354, 92–95.

    CAS  Google Scholar 

  17. Manser, J. S.; Christians, J. A.; Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev.2016, 116, 12956–13008.

    CAS  Google Scholar 

  18. Xiao, Z. W.; Meng, W. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Searching for promising new perovskite-based photovoltaic absorbers: The importance of electronic dimensionality. Mater. Horiz.2017, 4, 206–216.

    Google Scholar 

  19. Saidaminov, M. I.; Mohammed, O. F.; Bakr, O. M. Low-dimensional-networked metal halide perovskites: The next big thing. ACS Energy Lett.2017, 2, 889–896.

    CAS  Google Scholar 

  20. Yin, J.; Maity, P.; De Bastiani, M.; Dursun, I.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. Molecular behavior of zero-dimensional perovskites. Sci. Adv.2017, 3, e1701793.

    Google Scholar 

  21. Almutlaq, J.; Yin, J.; Mohammed, O. F.; Bakr, O. M. The benefit and challenges of zero-dimensional perovskites. J. Phys. Chem. Lett.2018, 9, 4131–4138.

    CAS  Google Scholar 

  22. Lin, H. R.; Zhou, C. K.; Tian, Y.; Siegrist, T.; Ma, B. W. Low-dimensional organometal halide perovskites. ACS Energy Lett.2018, 3, 54–62.

    CAS  Google Scholar 

  23. Akkerman, Q. A.; Park, S.; Radicchi, E.; Nunzi, F.; Mosconi, E.; De Angelis, F.; Brescia, R.; Rastogi, P.; Prato, M.; Manna, L. Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett.2017, 17, 1924–1930.

    CAS  Google Scholar 

  24. Wu, L. Z.; Hu, H. C.; Xu, Y.; Jiang, S.; Chen, M.; Zhong, Q. X.; Yang, D.; Liu, Q. P.; Zhao, Y.; Sun, B. Q. et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: Water- triggered transformation through a CsX-stripping mechanism. Nano Lett.2017, 17, 5799–5804.

    CAS  Google Scholar 

  25. Hu, H. C.; Wu, L. Z.; Tan, Y. S.; Zhong, Q. X.; Chen, M.; Qiu, Y. H.; Yang, D.; Sun, B. Q.; Zhang, Q.; Yin, Y. D. Interfacial synthesis of highly stable CsPbX3/oxide janus nanoparticles. J. Am. Chem. Soc.2018, 140, 406–412.

    CAS  Google Scholar 

  26. Fanizza, E.; Cascella, F.; Altamura, D.; Giannini, C.; Panniello, A.; Triggiani, L.; Panzarea, F.; Depalo, N.; Grisorio, R.; Suranna, G. P. et al. Post-synthesis phase and shape evolution of CsPbBr3 colloidal nanocrystals: The role of ligands. Nano Res.2019, 12, 1155–1166.

    CAS  Google Scholar 

  27. Saidaminov, M. I.; Almutlaq, J.; Sarmah, S.; Dursun, I.; Zhumekenov, A. A.; Begum, R.; Pan, J.; Cho, N.; Mohammed, O. F.; Bakr, O. M. Pure Cs4PbBr6: Highly luminescent zero-dimensional perovskite solids. ACS Energy Lett.2016, 1, 840–845.

    CAS  Google Scholar 

  28. Chen, D. Q.; Wan, Z. Y.; Chen, X.; Yuan, Y. J.; Zhong, J. S. Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores. J. Mater. Chem. C2016, 4, 10646–10653.

    CAS  Google Scholar 

  29. Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater.2016, 15, 247–251.

    CAS  Google Scholar 

  30. Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc.2016, 138, 2941–2944.

    CAS  Google Scholar 

  31. Vargas, B.; Ramos, E.; Pérez-Gutiérrez, E.; Alonso, J. C.; Solis-Ibarra, D. A direct bandgap copper-antimony halide perovskite. J. Am. Chem. Soc.2017, 139, 9116–9119.

    CAS  Google Scholar 

  32. Luo, J. J.; Wang, X. M.; Li, S. R.; Liu, J.; Guo, Y. M.; Niu, G. D.; Yao, L.; Fu, Y. H.; Gao, L.; Dong, Q. S. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature2018, 563, 541–545.

    CAS  Google Scholar 

  33. Ju, M. G.; Dai, J.; Ma, L.; Zeng, X. C. Lead-free mixed tin and germanium perovskites for photovoltaic application. J. Am. Chem. Soc.2017, 139, 8038–8043.

    CAS  Google Scholar 

  34. Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc.2016, 138, 2138–2141.

    CAS  Google Scholar 

  35. Pan, W. C.; Wu, H. D.; Luo, J. J.; Deng, Z. Z.; Ge, C.; Chen, C.; Jiang, X. W.; Yin, W. J.; Niu, G. D.; Zhu, L. J. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics2017, 11, 726–732.

    CAS  Google Scholar 

  36. Li, Q.; Wang, Y. G.; Pan, W. C.; Yang, W. G.; Zou, B.; Tang, J.; Quan, Z. W. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite. Angew. Chem., Int. Ed.2017, 56, 15969–15973.

    CAS  Google Scholar 

  37. Chen, N.; Cai, T.; Li, W. H.; Hills-Kimball, K.; Yang, H. J.; Que, M. D.; Nagaoka, Y.; Liu, Z. Y.; Yang, D.; Dong, A. G. et al. Yb- and Mn-doped lead-free double perovskite Cs2AgBiX6 (X = Cl-, Br-) nanocrystals. ACS Appl. Mater. Interfaces2019, 11, 16855–16863.

    CAS  Google Scholar 

  38. Bekenstein, Y.; Dahl, J. C.; Huang, J. M.; Osowiecki, W. T.; Swabeck, J. K.; Chan, E. M.; Yang, P. D.; Alivisatos, A. P. The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions. Nano Lett.2018, 18, 3502–3508.

    CAS  Google Scholar 

  39. Lyu, M.; Yun, J. H.; Cai, M. L.; Jiao, Y. L.; Bernhardt, P. V.; Zhang, M.; Wang, Q.; Du, A. J.; Wang, H. X.; Liu, G. et al. Organic-inorganic bismuth (III)-based material: A lead-free, air-stable and solutionprocessable light-absorber beyond organolead perovskites. Nano Res.2016, 9, 692–702.

    CAS  Google Scholar 

  40. Sun, J.; Yang, J.; Lee, J. I.; Cho, J. H.; Kang, M. S. Lead- free perovskite nanocrystals for light-emitting devices. J. Phys. Chem. Lett.2018, 9, 1573–1583.

    CAS  Google Scholar 

  41. Li, M. Q.; Hu, Y. Q.; Bi, L. Y.; Zhang, H. L.; Wang, Y. Y.; Zheng, Y. Z. Structure tunable organic-inorganic bismuth halides for an enhanced two-dimensional lead-free light-harvesting material. Chem. Mater.2017, 29, 5463–5467.

    CAS  Google Scholar 

  42. Yang, B.; Chen, J. S.; Hong, F.; Mao, X.; Zheng, K. B.; Yang, S. Q.; Li, Y. J.; Pullerits, T.; Deng, W. Q.; Han, K. L. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angew. Chem., Int. Ed.2017, 56, 12471–12475.

    CAS  Google Scholar 

  43. Leng, M. Y.; Yang, Y.; Zeng, K.; Chen, Z. W.; Tan, Z. F.; Li, S. R.; Li, J. H.; Xu, B.; Li, D. B.; Hautzinger, M. P. et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv. Funct. Mater.2018, 28, 1704446.

    Google Scholar 

  44. Qi, Z. Y.; Fu, X. W.; Yang, T. F.; Li, D.; Fan, P.; Li, H. L.; Jiang, F.; Li, L. H.; Luo, Z. Y.; Zhuang, X. J. et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Res.2019, 12, 1894–1899.

    CAS  Google Scholar 

  45. Tong, X. W.; Kong, W. Y.; Wang, Y. Y.; Zhu, J. M.; Luo, L. B.; Wang, Z. H. High-performance red-light photodetector based on lead-free bismuth halide perovskite film. ACS Appl. Mater. Interfaces2017, 9, 18977–18985.

    CAS  Google Scholar 

  46. Leng, M. Y.; Chen, Z. W.; Yang, Y.; Li, Z.; Zeng, K.; Li, K. H.; Niu, G. D.; He, Y. S.; Zhou, Q. C.; Tang, J. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angew. Chem., Int. Ed.2016, 55, 15012–15016.

    CAS  Google Scholar 

  47. Lou, Y. B.; Fang, M. Y.; Chen, J. X.; Zhao, Y. X. Formation of highly luminescent cesium bismuth halide perovskite quantum dots tuned by anion exchange. Chem. Commun.2018, 54, 3779–3782.

    CAS  Google Scholar 

  48. Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or cesium) for solar cell application. Adv. Mater.2015, 27, 6806–6813.

    CAS  Google Scholar 

  49. Zhang, X.; Wu, G.; Gu, Z.; Guo, B.; Liu, W.; Yang, S.; Ye, T.; Chen, C.; Tu, W.; Chen, H. Active-layer evolution and efficiency improvement of (CH3NH3)3Bi2I9-based solar cell on TiO2-deposited ITO substrate. Nano Res.2016, 9, 2921–2930.

    CAS  Google Scholar 

  50. Shin, J.; Kim, M.; Jung, S.; Kim, C. S.; Park, J.; Song, A.; Chung, K. B.; Jin, S. H.; Lee, J. H.; Song, M. Enhanced efficiency in lead-free bismuth iodide with post treatment based on a hole-conductor-free perovskite solar cell. Nano Res.2018, 11, 6283–6293.

    CAS  Google Scholar 

  51. Bai, F.; Hu, Y. H.; Hu, Y. Q.; Qiu, T.; Miao, X. L.; Zhang, S. F. Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Sol. Energy Mater. Sol. Cells2018, 184, 15–21.

    CAS  Google Scholar 

  52. Shimizu, M.; Koshimizu, M.; Fujimoto, Y.; Yanagida, T.; Ono, S.; Asai, K. Luminescence and scintillation properties of Cs3BiCl6 crystals. Opt. Mater.2016, 61, 115–118.

    CAS  Google Scholar 

  53. Tang, Y. Y.; Liang, M. L.; Chang, B. D.; Sun, H. Y.; Zheng, K. B.; Pullerits, T.; Chi, Q. J. Lead-free double halide perovskite Cs3BiBr6 with well-defined crystal structure and high thermal stability for optoelectronics. J. Mater. Chem. C2019, 7, 3369–3374.

    CAS  Google Scholar 

  54. Creutz, S. E.; Liu, H. B.; Kaiser, M. E.; Li, X. S.; Gamelin, D. R. Structural diversity in cesium bismuth halide nanocrystals. Chem. Mater.2019, 31, 4685–4697.

    CAS  Google Scholar 

  55. Imran, M.; Caligiuri, V.; Wang, M. J.; Goldoni, L.; Prato, M.; Krahne, R.; De Trizio, L.; Manna, L. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc.2018, 140, 2656–2664.

    CAS  Google Scholar 

  56. Radhakrishna, S.; Setty, R. S. S. Bismuth centers in alkali halides. Phys. Rev. B1976, 14, 969–976.

    CAS  Google Scholar 

  57. Wang, L. L.; Sun, Q.; Liu, Q. Z.; Shi, J. S. Investigation and application of quantitative relationship between sp energy levels of Bi3+ ion and host lattice. J. Solid State Chem.2012, 191, 142–146.

    CAS  Google Scholar 

  58. Xue, J. P.; Wang, X. F.; Jeong, J. H.; Yan, X. H. Spectral and energy transfer in Bi3+-Ren+ (n = 2, 3, 4) co-doped phosphors: Extended optical applications. Phys. Chem. Chem. Phys.2018, 20, 11516–11541.

    CAS  Google Scholar 

  59. Toyozawa, Y.; Inoue, M. Dynamical Jahn-Teller effect in alkali halide phosphors containing heavy metal ions. J. Phys. Soc. Jpn.1966, 21, 1663–1679.

    CAS  Google Scholar 

  60. Hills-Kimball, K.; Nagaoka, Y.; Cao, C.; Chaykovsky, E.; Chen, O. Synthesis of formamidinium lead halide perovskite nanocrystals through solid-liquid-solid cation exchange. J. Mater. Chem. C2017, 5, 5680–5684.

    CAS  Google Scholar 

  61. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A1976, 32, 751–767.

    Google Scholar 

  62. Li, Q.; Yin, L. X.; Chen, Z. W.; Deng, K. R.; Luo, S. P.; Zou, B.; Wang, Z. W.; Tang, J.; Quan, Z. W. High pressure structural and optical properties of two-dimensional hybrid halide perovskite (CH3NH3)3Bi2Br9. Inorg. Chem.2019, 58, 1621–1626.

    CAS  Google Scholar 

  63. Leng, M. Y.; Yang, Y.; Chen, Z. W.; Gao, W. R.; Zhang, J.; Niu, G. D.; Li, D. B.; Song, H. S.; Zhang, J. B.; Jin, S. et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Lett.2018, 18, 6076–6083.

    CAS  Google Scholar 

  64. Ng, T. W.; Chan, C. Y.; Lo, M. F.; Guan, Z. Q.; Lee, C. S. Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties. J. Mater. Chem. A2015, 3, 9081–9085.

    CAS  Google Scholar 

  65. Wu, N. Q.; Fu, L.; Su, M.; Aslam, M.; Wong, K. C.; Dravid, V. P. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett.2004, 4, 383–386.

    CAS  Google Scholar 

  66. Nagaoka, Y.; Tan, R.; Li, R. P.; Zhu, H.; Eggert, D.; Wu, Y. A.; Liu, Y. Z.; Wang, Z. W.; Chen, O. Superstructures generated from truncated tetrahedral quantum dots. Nature2018, 561, 378–382.

    CAS  Google Scholar 

  67. Chen, O.; Yang, Y. A.; Wang, T.; Wu, H. M.; Niu, C. G.; Yang, J. H.; Cao, Y. C. Surface-functionalization-dependent optical properties of II-VI semiconductor nanocrystals. J. Am. Chem. Soc.2011, 133, 17504–17512.

    CAS  Google Scholar 

  68. Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano2016, 10, 3648–3657.

    CAS  Google Scholar 

  69. McCall, K. M.; Stoumpos, C. C.; Kontsevoi, O. Y.; Alexander, G. C. B.; Wessels, B. W.; Kanatzidis, M. G. From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: Dimensional expansion induces a direct band gap but enhances electron-phonon coupling. Chem. Mater.2019, 31, 2644–2650.

    CAS  Google Scholar 

  70. Benin, B. M.; Dirin, D. N.; Morad, V.; Wörle, M.; Yakunin, S.; Rainò, G.; Nazarenko, O.; Fischer, M.; Infante, I.; Kovalenko, M. V. Highly emissive self-trapped excitons in fully inorganic zerodimensional tin halides. Angew. Chem., Int. Ed.2018, 57, 11329–11333.

    CAS  Google Scholar 

  71. Thirumal, K.; Chong, W. K.; Xie, W.; Ganguly, R.; Muduli, S. K.; Sherburne, M.; Asta, M.; Mhaisalkar, S.; Sum, T. C.; Soo, H. S. et al. Morphology- independent stable white-light emission from selfassembled two-dimensional perovskites driven by strong exciton- phonon coupling to the organic framework. Chem. Mater.2017, 29, 3947–3953.

    CAS  Google Scholar 

  72. McCall, K. M.; Stoumpos, C. C.; Kostina, S. S.; Kanatzidis, M. G.; Wessels, B. W. Strong electron-phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater.2017, 29, 4129–4145.

    CAS  Google Scholar 

  73. Ma, Z. W.; Liu, Z.; Lu, S. Y.; Wang, L. R.; Feng, X. L.; Yang, D. W.; Wang, K.; Xiao, G. J.; Zhang, L. J.; Redfern, S. A. T. et al. Pressureinduced emission of cesium lead halide perovskite nanocrystals. Nat. Commun.2018, 9, 4506.

  74. Shi, Y.; Ma, Z. W.; Zhao, D. L.; Chen, Y. P.; Cao, Y.; Wang, K.; Xiao, G. J.; Zou, B. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites. J. Am. Chem. Soc.2019, 141, 6504–6508.

    CAS  Google Scholar 

  75. Mao, L. L.; Wu, Y. L.; Stoumpos, C. C.; Wasielewski, M. R.; Kanatzidis, M. G. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites. J. Am. Chem. Soc.2017, 139, 5210–5215.

    CAS  Google Scholar 

  76. Dohner, E. R.; Jaffe, A.; Bradshaw, L. R.; Karunadasa, H. I. Intrinsic white-light emission from layered hybrid perovskites. J. Am. Chem. Soc.2014, 136, 13154–13157.

    CAS  Google Scholar 

  77. Li, S. R.; Luo, J. J.; Liu, J.; Tang, J. Self-trapped excitons in allinorganic halide perovskites: Fundamentals, status, and potential applications. J. Phys. Chem. Lett.2019, 10, 1999–2007.

    CAS  Google Scholar 

  78. Fukuda, A. Jahn-teller effect on the structure of the emission produced by excitation in the A band of KI: Tl-type phosphors. Two kinds of minima on the Γ4(3T1u) adiabatic potential-energy surface. Phys. Rev. B1970, 1, 4161–4178.

    Google Scholar 

  79. Pelle, F.; Jacquier, B.; Denis, J. P.; Blanzat, B. Optical properties of Cs2NaBiCl6. J. Lumin.1978, 17, 61–72.

    CAS  Google Scholar 

  80. Kang, J. G.; Yoon, H. M.; Chun, G. M.; Kim, Y. D.; Tsuboi, T. Spectroscopic studies of Bi3+ colour centres in KCl single crystals. J. Phys.: Condens. Matter1994, 6, 2101–2116.

    CAS  Google Scholar 

  81. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion- exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett.2015, 15, 5635–5640.

    CAS  Google Scholar 

  82. Creutz, S. E.; Crites, E. N.; De Siena, M. C.; Gamelin, D. R. Anion exchange in cesium lead halide perovskite nanocrystals and thin films using trimethylsilyl halide reagents. Chem. Mater.2018, 30, 4887–4891.

    CAS  Google Scholar 

  83. Pal, J.; Bhunia, A.; Chakraborty, S.; Manna, S.; Das, S.; Dewan, A.; Datta, S.; Nag, A. Synthesis and optical properties of colloidal M3Bi2I9 (M = Cs, Rb) perovskite nanocrystals. J. Phys. Chem. C2018, 122, 10643–10649.

    CAS  Google Scholar 

  84. Zhang, Y. H.; Yin, J.; Parida, M. R.; Ahmed, G. H.; Pan, J.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals. J. Phys. Chem. Lett.2017, 8, 3173–3177.

    CAS  Google Scholar 

  85. Udayabhaskararao, T.; Houben, L.; Cohen, H.; Menahem, M.; Pinkas, I.; Avram, L.; Wolf, T.; Teitelboim, A.; Leskes, M.; Yaffe, O. et al. A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater.2018, 30, 84–93.

    CAS  Google Scholar 

  86. Palazon, F.; Urso, C.; De Trizio, L.; Akkerman, Q.; Marras, S.; Locardi, F.; Nelli, I.; Ferretti, M.; Prato, M.; Manna, L. Postsynthesis transformation of insulating Cs4PbBr6 nanocrystals into bright perovskite CsPbBr3 through physical and chemical extraction of CsBr. ACS Energy Lett.2017, 2, 2445–2448.

    CAS  Google Scholar 

  87. Nelson, R. D.; Santra, K.; Wang, Y.; Hadi, A.; Petrich, J. W.; Panthani, M. G. Synthesis and optical properties of ordered-vacancy perovskite cesium bismuth halide nanocrystals. Chem. Commun.2018, 54, 3640–3643.

    CAS  Google Scholar 

Download references

Acknowledgements

O. C. acknowledges the support from Brown University startup funds and the National Science Foundation (OIA-1538893). K. H. -K. is supported by the U.S. Department of Education GAANN research fellowship (P200A150037). TEM, XRD, XPS and Raman measurements were performed at the Electron Microscopy Facility and NanoTools Facility in the Institute for Molecular and Nanoscale Innovation (IMNI) in Brown University. Part of the photoluminescence measurements was performed at Clemson University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ou Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Cai, T., Liu, E. et al. Synthesis and transformation of zero-dimensional Cs3BiX6 (X = Cl, Br) perovskite-analogue nanocrystals. Nano Res. 13, 282–291 (2020). https://doi.org/10.1007/s12274-019-2611-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2611-5

Keywords

Navigation