Skip to main content
Log in

Electrospun Polyphenylquinoxaline Ultraline Non-woven Fibrous Membranes with Excellent Thermal and Alkaline Resistance: Preparation and Characterization

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A series of polyphenylquinoxaline (PPQ) ultrafine non-woven fibrous membranes have been first successfully prepared via the electrospinning procedure with the soluble PPQ solutions as the starting materials. For this purpose, various organo-soluble PPQ resins were synthesized via the one-step high temperature polycondensation procedure from the aromatic ether-bridged bis(α-diketone) and bis(o-diamine) monomers. Flexible ether linkages and pendant bulky phenyl substituents endowed the PPQ resins good solubility in polar aprotic solvents. The high-molecular-weight PPQ resins were dissolved in N-methyl-2-pyrrolidone (NMP) to afford the PPQ electrospinning solution except PPQ-Ia derived from 4,4′-oxydibenzil (ODB) and 3,3′-diaminobenzidine (DAB) due to the limited solubility in the solvent. All the derived PPQ ultrafine non-woven fibrous membranes maintained good structure integrity after hydrolysis aging either at room temperature (25 °C) for 72 h or at refluxing temperature (100 °C) for 24 h in an aqueous sodium hydroxide (NaOH) solution at a solid content of 20 wt%. Comparatively, the polyimide (PI) reference electrospun membrane (PI-ref) derived from 1,2,4,5-pyrromellitic anhydride (PMDA) and 4,4′-oxydianiline (ODA) lost its original structure only after boiling in the same NaOH solution within 3 h. In addition, the developed PPQ ultrafine non-woven fibrous membranes exhibited good thermal stability with the 5 % weight loss temperatures (T5%) higher than 555.0 °C in nitrogen and glass transition temperatures (Tg) in the range of 248.1–266.1 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Y. Ma, C. Burger, B. S. Hsiao, and B. Chu, J. Mater. Chem., 21, 7507 (2011).

    Article  CAS  Google Scholar 

  2. B. Sillion, High Perform. Polym., 11, 417 (1999).

    Article  CAS  Google Scholar 

  3. L. I. Olvera, M. G. Zolotukhin, O. Hernandez-Cruz, S. Fomine, J. Cardenas, R. L. Gavino-Ramirez, and F. A. Ruiz-Trevino, ACS Macro/eft., 4, 492 (2015).

    CAS  Google Scholar 

  4. X. M. Zhang, J. G. Liu, and S. Y. Yang, Rev. Adv. Mater. Sci., 46, 22 (2016).

    Google Scholar 

  5. R. M. Hergenrother, High Perform. Polym., 15, 3 (2003).

    Article  CAS  Google Scholar 

  6. D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, J. Y. Lai, and C. S. Ha, Prog. Polym. Sci., 37, 907 (2012).

    Article  CAS  Google Scholar 

  7. Y. Xu and A. T. Zehnder, Exper Meek, 57, 857 (2017).

    CAS  Google Scholar 

  8. L. E. Stephans, A. Myles, and R. R. Thomas, Langmuir, 16, 4706 (2000).

    Article  CAS  Google Scholar 

  9. S. H. Jung, D. Y. Kim, H. N. Cho, and D. H. Suh, J. Polym. Sci.: Part A: Polym. Chem., 44, 1189 (2006).

    Article  CAS  Google Scholar 

  10. E. S. Krongauz, Vysokomol. Soedin. Ser A, 26, 227 (1984).

    CAS  Google Scholar 

  11. R. M. Hergenrother in “Encyclopedia of Polymer Science and Engineering” (H. F. Mark, N. Bikales, C. Overberger, and G. Mendes Eds.), Vol. 13, p.55, Wiley, New York, 1988.

  12. V. V. Korsak, E. S. Krongauz, A. P. Travnikova, N. M. Belomoina, H. Raubach, and D. Hein, Acta. Polym., 34, 213 (1983).

    Article  Google Scholar 

  13. C. Li, Z. Li, J. G. Liu, H. X. Yang, and S. Y. Yang, J. Macromol. Sci., Part A: Pure Appl. Chem., 47, 248 (2010).

    Article  CAS  Google Scholar 

  14. C. Li, Z. Li, J. G. Liu, H. X. Yang, and S. Y. Yang, Chin. J. Polym. Sci., 29, 971 (2010).

    Article  Google Scholar 

  15. C. Li, Z. Li, J. G. Liu, X. J. Zhao, H. X. Yang, and S. Y. Yang, Polymer, 51, 3851 (2010).

    Article  CAS  Google Scholar 

  16. H. J. Ni, J. G. Liu, and S. Y. Yang, Chem. Lett., 45, 75 (2016).

    Article  CAS  Google Scholar 

  17. X. M. Zhang, H. J. Ni, J. G. Liu, and S. Y. Yang, Chem. Lett, 45, 607 (2016).

    Article  CAS  Google Scholar 

  18. J. G. Liu in “Handbook of Thermoplastics”, 2nd ed. (O. Olabisi and K. Adewale, Eds.), Chap. 17, pp.533–569, CRC Press, Boca Raton, 2016.

    Google Scholar 

  19. D. C. Seel and B. C. Benicewicz, J. Membr. Sci., 405–406, 57 (2012).

    Article  Google Scholar 

  20. W. J. Ma, M. J. Zhang, Z. C. Liu, M. M. Kang, C. B. Huang, and G. D. Fu, J. Membr. Sci., 570–571, 303 (2019).

    Article  Google Scholar 

  21. Z. W. Xu, X. H. Li, K. Y. Teng, B. M. Zhou, M. J. Ma, M. J. Shan, K. Y. Jiao, X. M. Qian, and J. T. Fan, J. Membr. Sci., 535, 94 (2017).

    Article  CAS  Google Scholar 

  22. F. Croce, M. L. Focarete, J. Hassoun, I. Meschini, and B. Scrosati, Energy Environ. Sci., 4, 921 (2011).

    Article  CAS  Google Scholar 

  23. Y. E. Miao, G. N. Zhu, H. Q. Hou, Y. Y. Xia, and T. X. Liu, J. Power. Sources, 226, 82 (2013).

    Article  CAS  Google Scholar 

  24. K. Liu, W. Liu, Y. C. Qiu, B. Kong, Y. M. Sun, Z. Chen, D. Zhuo, D. C. Lin, and Y. Cui, Sci. Adv., 3, e1601978 (2017).

    Article  Google Scholar 

  25. Y Huang, Q. L. Huang, H. Liu, C. X. Zhang, Y. W. You, N. N. Li, and C. F. Xiao, J. Membr. Sci., 523, 317 (2017).

    Article  CAS  Google Scholar 

  26. S. H. Jiang, H. Q. Hou, S. Agarwal, and A. Greiner, ACS Sustainable Chem. Eng., 4, 4797 (2016).

    Article  CAS  Google Scholar 

  27. I. I. Ponomarev, Y. N. Filatov, Iv. I. Ponomarev, I. Y. Filatov, D. Y. Razorenov, K. M. Skupov, O. M. Zhigalina, and V. G. Zhigalina, Fibre Chem., 49, 183 (2017).

    Article  CAS  Google Scholar 

  28. C. Y. Guo, J. G. Liu, L. M. Yin, M. G. Huangfu, Y. Zhang, X. Wu, and X. M. Zhang, Fiber. Polym., 19, 1706 (2018).

    Article  CAS  Google Scholar 

  29. C. Y. Guo, X. Wu, J. G. Liu, Y. Zhang, and X. M. Zhang, J. Photopolym. Sci. Technol., 31, 27 (2018).

    Article  CAS  Google Scholar 

  30. H. M. Relies, C. M. Orlando, D. R. Heath, R. W. Schluenz, J. S. Manello, and S. Hoff, J. Polym. Sci.: Polym. Chem., 15, 2441 (1977).

    Google Scholar 

  31. G. M. Gong, K. Gao, J. T. Wu, N. Sun, C. Zhou, Y. Zhao, and L. Jiang, J. Mater. Chem. A., 3, 713 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the Fundamental Research Funds of China University of Geosciences, Beijing (No. 2652017345) and National Key Research and Development Program of China (No. 2017YFC0703100) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-gang Liu or Xiu-min Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Cy., Yin, Lm., Liu, Jg. et al. Electrospun Polyphenylquinoxaline Ultraline Non-woven Fibrous Membranes with Excellent Thermal and Alkaline Resistance: Preparation and Characterization. Fibers Polym 20, 2485–2492 (2019). https://doi.org/10.1007/s12221-019-9349-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9349-2

Keywords

Navigation