Skip to main content
Log in

In situ Preparation of PVA/Schizophyllan-AgNPs Nanofiber as Potential of Wound Healing: Characterization and Cytotoxicity

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The use of natural polymers and electrospinning as a new method of wound dressing production is one of the things that can revolutionize the medical world. Due to the importance of wound healing and characteristics such as anti-inflammatory and antimicrobial properties, it is possible to use natural compounds such as fungi and metabolites derived from them to produce wound dressing. In this study, schizophyllan (SPG) as an extracellular polysaccharide was extracted from Iranian Schizophyllum commune (NCBI MG761830) and then the silver nanoparticles (AgNPs) were produced by the in-situ method in 1.5 % SPG solution. Afterward, they were combined with polyvinyl alcohol 10 % (PVA) polymer to strengthen the fiber structure. We investigated the properties of nanofibers containing PVA/SPG-AgNPs and PVA/SPG20 %. The physicochemical properties of two fibers were investigated by SEM, TEM, FTIR, contact angle, water uptake, nanoparticle release, and biological test (antibacterial, and MTT). The diameter of the nanofiber-containing the AgNPs was about 169 nm and the other nanofiber was about 212 nm. The highest inhibition of the growth of the bacterium by PVA/SPG-AgNPs against E. coli and S. aureus was about 88.34 % and 64.7 %, respectively. The silver ion release from PVA/SPG-AgNPs nanofibers was 21 μg/ml after fifth day. Both nanofibers had no toxic effect on L929 fibroblast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen and H. Schluesener, Toxicol. Lett., 176, 1 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. G. Andreas and J. H. Wendorff, Angew. Chem. Int. Ed., 46, 5670 (2007).

    Article  CAS  Google Scholar 

  3. F. F. Soleimani, T. Saleh, S. A. Shojaosadati, and R. Poursalehi, BioNanoScience, 8, 72 (2018).

    Article  Google Scholar 

  4. M. Koosha, M. Raoufi, and H. Moravvej, Colloid Surf. B-Biointerfaces, 179, 270 (2019).

    Article  CAS  Google Scholar 

  5. F. Xu, B. Weng, R. Gilkerson, L. A. Materon, and K. Lozano, Carbohydr. Polym., 115, 16 (2015).

    Google Scholar 

  6. P. Vashisth, K. Nikhil, P. Roy, P. A. Pruthi, R. P. Singh, and V. Pruthi, Carbohydr. Polym., 136, 851 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Y. Tang, X. Lan, C. Liang, Z. Zhong, R. Xie, Y. Zhou, X. Miao, H. Wang, and W. Wang, Carbohydr. Polym., 219, 113 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. M. R. Safaee-Ardakani, A. Hatamian-Zarmi, S. M. Sadat, Z. B. Mokhtari-Hosseini, B. Ebrahimi-Hosseinzadeh, J. Rashidiani, and H. Kooshki, Int. J. Biol. Macromol., 127, 27 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. A. T. Borchers, C. L. Keen, and M. E. Gershwin, Exp. Biol. Med., 229, 393 (2004).

    Article  CAS  Google Scholar 

  10. Y. Chen, M. Xie, W. Li, H. Zhang, S. Nie, Y. Wang, and C. Li, Food Sci. Biotechnol., 21, 191 (2012).

    Article  CAS  Google Scholar 

  11. S. P. Wasser, Appl. Microbiol. Biotechnol., 60, 258 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. S. Rahar, G. Swami, N. Nagpal, M. A. Nagpal, and G. S. Singh, J. Adv. Pharm. Technol. Res., 2, 94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. H. Limin, Z. Jianchun, W. Tianyi, Z. Jian, L. Jike, W. Qizhi, and X. Xinhui, Eng. Sci., 2, 013 (2013).

    Google Scholar 

  14. S. Usman and S. Ali, Int. J. Curr. Microbiol. Appl. Sci., 4, 258 (2015).

    Google Scholar 

  15. Y. Zhang, H. Kong, Y. Fang, K. Nishinari, and G. O. Phillips, Bioactive Carbohydrates and Dietary Fibre, 1, 53 (2013).

    Article  CAS  Google Scholar 

  16. B. Du, H. Zeng, Y. Yang, Z. Bian, and B. Xu, Int. J. Biol. Macromol., 91, 100 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. R. G. Reyes, W. Grassel, and U. Rau, J. Nature Studies, 7, (2009).

  18. K. Zhong, L. Liu, L. Tong, X. Zhong, Q. Wang, and S. Zhou, Int. J. Biol. Macromol., 62, 13 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. T. Nitanan, T. P. Akkaramongkolporn, T. Rojanarata, T. Ngawhirunpat, and P. Opanasopit, Int. J. Pharm., 448, 71 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. A. M. Abdelgawad, S. M. Hudson, and O. J. Rojas, Carbohydr. Polym., 100, 166 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Y. H. Lee, J. J. Chang, M. C. Yang, C. T. Chien, and W. F. Lai, Carbohydr. Polym., 88, 809 (2012).

    Article  CAS  Google Scholar 

  22. V. K. Sharma, R. A. Yngard, and Y. Lin, Adv. Colloid. Interface Sci., 145, 83 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. A. Khosravi and S. Shojaosadati, IJNA, 6, 973 (2009).

    CAS  Google Scholar 

  24. S. M. Ghaseminezhad, S. Hamedi, and S. A. Shojaosadati, Carbohydr. Polym., 89, 467 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. H. Jamshidian, S. A. Shojaosadati, F. Vilaplana, S. M. Mousavi, and M. R. Soudi, Int. J. Biol. Macromol., 92, 484 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. M. Kumari, S. A. Survase, and R. S. Singhal, Bioresour. Technol., 99, 1036 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. A. M. Abdel-Mohsen, R. M. Abdel-Rahman, M. M. Fouda, L. Vojtova, L. Uhrova, A. F. Hassan, and J. Jancar, Carbohydr. Polym., 102, 238 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. S. A. Kheradvar, J. Nourmohammadi, H. Tabesh, and B. Bagheri, Colloid Surf. B-Biointerfaces, 166, 9 (2018).

    Article  CAS  Google Scholar 

  29. N. H. Hotaling, K. Bharti, H. Kriel, and C. G. Simon, Biomaterials, 61, 327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. K. Ramadass, S. Perumal, A. Gopinath, A. Nisal, S. Subramanian, and B. Madhan, ACS Appl. Mater. Interfaces, 6, 15015 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. S. Fathollahipour, A. Abouei Mehrizi, A. Ghaee, and M. Koosha, J. Biomed. Mater. Res. A., 103, 3852 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Z. Hadisi, J. Nourmohammadi, and J. Mohammadi, Ceram Int., 41, 10745 (2015).

    Article  CAS  Google Scholar 

  33. Z. Hadisi, J. Nourmohammadi, N. Haghighipour, and S. Heidari, Micro Nano Lett., 11, 514 (2016).

    Article  CAS  Google Scholar 

  34. D. V. Goia, J. Mater. Chem., 14, 451 (2004).

    Article  CAS  Google Scholar 

  35. A. A. Hebeish, M. H. El-Rafie, F. A. Abdel-Mohdy, E. S. Abdel-Halim, and H. E. Emam, Carbohydr. Polym., 82, 933 (2010).

    Article  CAS  Google Scholar 

  36. W. Xu, W. Jin, L. Lin, C. Zhang, Z. Li, Y. Li, and B. Li, Carbohydr. Polym., 101, 961 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. L. V. Schueren, B. De Schoenmaker, Ö. I. K. UGent, and K. D. UGent, Eur. Polym. J., 47, 1256 (2011).

    Article  CAS  Google Scholar 

  38. R. Y. Basha, T. S. Sampath Kumar, and M. Doble, Macromol. Mater. Eng., 302, 1 (2017).

    Article  CAS  Google Scholar 

  39. M. Liu, G. Luo, Y. Wang, W. He, T. Liu, D. Zhou, and J. Wu, Int. J. Nanomed., 12, 6827 (2017).

    Article  CAS  Google Scholar 

  40. X. Liu, T. Lin, J. Fang, G. Yao, H. Zhao, M. Dodson, and X. Wang, J. Biomed. Mater. Res. Part A., 94A, 499 (2010b).

    Google Scholar 

  41. Z. Ma, Z. Mao, and C. Gao, Colloid Surf. B-Biointerfaces, 60, 137 (2007).

    Article  CAS  Google Scholar 

  42. A. Travan, C. Pelillo, I. Donati, E. Marsich, M. Benincasa, T. Scarpa, S. Semeraro, G. Turco, R. Gennaro, and S. Paoletti, Biomacromolecules, 10, 1429 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. F. Xu, B. Weng, R. Gilkerson, L. A. Materon, and K. Lozano, Carbohydr. Polym., 115, 16 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. P. Zahedi, I. Rezaeian, S. O. Ranaei-Siadat, S. H. Jafari, and P. Supaphol, Polym. Adv. Technol., 21, 77 (2010).

    Article  CAS  Google Scholar 

  45. N. Charernsriwilaiwat, T. Rojanarata, T. Ngawhirunpat, and P. Opanasopit, Int. Wound J., 11, 215 (2014).

    Article  PubMed  Google Scholar 

  46. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, J. Biomed. Mater. Res., 52, 662 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. M. Rai, A. Yadav, and A. Gade, Biotechnol. Adv., 27, 76 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. V. Lazar, Anaerobe, 17, 280 (2011).

    Article  PubMed  Google Scholar 

  49. P. T. S. Kumar, S. Abhilash, K. Manzoor, S. V. Nair, H. Tamura, and R. Jayakumar, Carbohydr. Polym., 80, 761 (2010).

    Article  CAS  Google Scholar 

  50. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, and D. Dash, Nanotechnology, 18, 225103 (2007).

    Article  CAS  Google Scholar 

  51. M. K. Joshi, H. R. Pant, A. P. Tiwari, H. J. Kim, C. H. Park, and C. S. Kim, Chem. Eng. J., 275, 79 (2015b).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Rashidiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaee-Ardakani, M.R., Hatamian-Zarmi, A., Sadat, S.M. et al. In situ Preparation of PVA/Schizophyllan-AgNPs Nanofiber as Potential of Wound Healing: Characterization and Cytotoxicity. Fibers Polym 20, 2493–2502 (2019). https://doi.org/10.1007/s12221-019-9388-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9388-8

Keywords

Navigation