Skip to main content
Log in

Enumeration of relativistic states for superheavy and transactinide dimers in the periodic table

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We have employed combinatorial techniques based on multinomial symmetric function (S-function) techniques for exhaustive enumeration and generation of relativistic (ω–ω states) states originating from relativistic 2-component molecular spinors for the seventh row superheavy dimers (Nh2-Ts2), transactinide dimers (Rf2-Rg2) and Ac2. The multinomial generators are so powerful that the complete set of relativistic states of all seventh row superheavy dimers or transactinide dimers are enumerated and constructed in a single generating function. We have computed and constructed the enumeration tables for all valence ω–ω states for the 7p-block and 6d-block dimers (Nh2-Ts2, Rf2-Rg2). Our results show that there are 6455 S-function terms giving rise to 102,830 valence ω–ω states- all arising only from the 6d shells of Bh2. Extension of the developed techniques to relativistic 4-component and 4-spinors arising from fermionic spin-3/2 particles are also suggested with potential applications NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Carbó-Dorca, T. Chakraborty, Divagations about the periodic table: Boolean hypercube quantum similarity connections. J. Comput. Chem. (2019). https://doi.org/10.1002/jcc.26044

    Article  PubMed  Google Scholar 

  2. D.H. Rouvray, R.B. King (eds.), Periodic Table into the 21stCentury, illustrated edn. (Research Studies Press, Philadelphia, 2004), p. 410

    Google Scholar 

  3. G. Restrepo, The periodic system: a mathematical approach, in Mendeleev to Oganesson: A Multidisciplinary Perspective on the Periodic Table, ed. by E.R. Scerri, G. Restrepo (Oxford University Press, New York, 2017)

    Google Scholar 

  4. E.R. Scerri, Can quantum ideas explain chemistry’s greatest icon? Nature 565, 557–559 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. K.S. Pitzer (ed.), Molecular Structure Statistical Thermodynamics: Selected Papers of Kenneth S. Pitzer, vol. 1 (World Scientific, Singapore, 1993), p. 536

    Google Scholar 

  6. K. Balasubramanian, K.S. Pitzer, Relativistic quantum chemistry. Adv. Chem. Phys. 67, 287–320 (1987)

    CAS  Google Scholar 

  7. K.S. Pitzer, Relativistic effects on chemical properties. Acc. Chem. Res. 12, 271–276 (1979)

    Article  CAS  Google Scholar 

  8. K.S. Pitzer, Relativistic calculations of dissociation energies related properties. Int. J. Quantum Chem. 25, 131–148 (1984)

    Article  CAS  Google Scholar 

  9. K. Balasubramanian, Relativistic Effects in Chemistry, Part A: Theory & Techniques (Wiley, New York, 1997), p. 327

    Google Scholar 

  10. K. Balasubramanian, Relativistic Effects in Chemistry, Part B: Applications (Wiley, New York, 1997), p. 547

    Google Scholar 

  11. K. Balasubramanian, Relativity Chemical and Bonding. J. Phys. Chem. 93, 6585–6596 (1989)

    Article  CAS  Google Scholar 

  12. K.S. Pitzer, Are elements 112, 114, 118 relatively inert gases? J. Chem. Phys. 63, 1032–1033 (1975)

    Article  CAS  Google Scholar 

  13. A. Yakushev, R. Eichler, “Gas-phase chemistry of element 114, lerovium, in EPJ Web of Conferences, vol. 131, p. 07003. EDP Sciences (2016)

  14. A. Yakushev, J.M. Gates, A. Türler, M. Schädel, C.E. Düllmann, D. Ackermann, D.K. Eberhardt, Superheavy element flerovium (element 114) is a volatile metal. Inorg. Chem. 53, 1624–1629 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. L.R. Morss, N.M. Edelstein, J. Fuger (eds.), The Chemistry of the Actinide Transactinide Elements, 3rd edn. (Springer, Berlin, 2006)

    Google Scholar 

  16. M.C. Heaven, K.A. Peterson, Chapter 1: Probing Actinide Bonds in the Gas Phase: Theory and Spectroscopy, in Experimental and Theoretical Approaches to Actinide Chemistry, Ed. by J. K. Gibson and W. De Jong (Wiley, 2018). https://doi.org/10.1002/9781119115557.ch1

  17. C. Janiak, R. Hoffmann, Thallium(I)-thallium(I) indium(I)-indium(I) interactions: from the molecular to the solid state. J. Am. Chem. Soc. 112, 5924–5946 (1990)

    Article  CAS  Google Scholar 

  18. W.L. Li, J.B. Lu, Z.L. Wang, H.S. Hu, J. Li, Relativity-induced bonding pattern change in coinage metal dimers M2 (M = Cu, Ag, Au, Rg). Inorg. Chem. 57, 5499–5506 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. T. Parsons-Moss, L.K. Schwaiger, A. Hubaud, Y.J. Hu, H. Tueysuez, P. Yang, K. Balasubramanian, H. Nitsche, Plutonium complexation by phosphonate-functionalized mesoporous silica, No. LLNL-CONF–461496. Lawrence Livermore National Laboratory (2010)

  20. L.K. Schwaiger, T. Parsons-Moss, A. Hubaud, H. Tueysuez, K. Balasubramanian. P. Yang, H. Nitsche, Actinide lanthanide complexation by organically modified mesoporous silica, in Abstracts of Papers of the American Chemical Society, 239, 98-NUCL, MAR 21 (2010), WOS:000208189303645

  21. R. Carbó-Dorca, A. Gallegos, A.J. Sánchez, Notes on quantitative structure-properties relationships (QSPR)(1): a discussion on a QSPR dimensionality paradox (QSPR DP) its quantum resolution. J. Comput. Chem. 30, 1146–1159 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. R. Carbó-Dorca, E. Besalú, Shells, point cloud huts, generalized scalar products, cosines similarity tensor representations in vector semispaces. J. Math. Chem. 50, 210–219 (2012)

    Article  CAS  Google Scholar 

  23. R. Carbó-Dorca, N-dimensional boolean hypercubes the goldbach conjecture. J. Math. Chem. 54, 1213–1220 (2016). https://doi.org/10.1007/s10910-016-0628-5

    Article  CAS  Google Scholar 

  24. J.R. Dias, A periodic table for polycyclic aromatic hydrocarbons. Acc. Chem. Res. 18, 241–248 (1985)

    Article  CAS  Google Scholar 

  25. J.R. Dias, A periodic table for polycyclic aromatic hydrocarbons. IV. Isomer enumeration of polycyclic conjugated hydrocarbons. 2. J. Chem. Inf. Comput. Sci. 24, 124–135 (1984)

    Article  CAS  Google Scholar 

  26. P.G. Mezey, Similarity analysis in two three dimensions using lattice animals ploycubes. J. Math. Chem. 11, 27–45 (1992)

    Article  Google Scholar 

  27. A. Fralov, E. Jako, P.G. Mezey, Logical models for molecular shapes and families. J. Math. Chem. 30, 389–409 (2001)

    Article  Google Scholar 

  28. P.G. Mezey, Some dimension problems in molecular databases. J. Math. Chem. 45, 1–6 (2009)

    Article  CAS  Google Scholar 

  29. K. Balasubramanian, Symmetry simplifications of space types in configuration-interaction induced by orbital degeneracy. Int. J. Quantum Chem. 20, 1255–1271 (1981)

    Article  CAS  Google Scholar 

  30. K. Balasubramanian, The combinatorics of graphical unitary group approach to many electron correlation. Theor. Chim. Acta 59, 237–250 (1981)

    Article  CAS  Google Scholar 

  31. R. Pauncz, The Symmetric Group in Quantum Chemistry (CRC Press, Boca Raton, 2018), p. 342

    Book  Google Scholar 

  32. H. Tan, M.Z. Liao, Y. Wang, G. Wu, K. Balasubramanian, A flexible correlation group table (CGT) method for the relativistic configuration interaction wavefunctions. J. Math. Chem. 28, 213–239 (2000)

    Article  CAS  Google Scholar 

  33. A.T. Balaban, Graph theory and theoretical chemistry. J. Mol. Struct. Theochem 120, 117–142 (1985)

    Article  CAS  Google Scholar 

  34. K. Balasubramanian, Nonrigid group theory, tunneling splittings, nuclear spin statistics of water pentamer: (H2O)5. J. Phys. Chem. A 108, 5527–5536 (2004)

    Article  CAS  Google Scholar 

  35. K. Balasubramanian, Group-theory nuclear-spin statistics of weakly-bound (H2O)N, (NH3)N, (CH4)N, NH4+(NH3)N. J. Chem. Phys. 95, 8273–8286 (1991)

    Article  CAS  Google Scholar 

  36. G. Pólya, R.C. Read, Combinatorial Enumeration of Groups, Graphs Chemical Compounds (Springer, New York, 1987)

    Book  Google Scholar 

  37. M.A. Harrison, R.G. High, On the cycle index of a product of permutation group. J. Comb. Theory 4, 277–299 (1968)

    Article  Google Scholar 

  38. F. Harary, E.M. Palmer, Graphical Enumeration (Academic press, New York, 1973)

    Google Scholar 

  39. I.G. Macdonald, Symmetric Functions Hall Polynomials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  40. A.T. Balaban, Enumerating isomers, in Chemical Graph Theory, ed. by D. Bonchev, D.H. Rouvray (Gordon & Beach Publishers, New York, 1991)

    Google Scholar 

  41. K. Balasubramanian, Relativistic double group spinor representations of nonrigid molecules. J. Chem. Phys. 120, 5524–5535 (2004)

    Article  CAS  PubMed  Google Scholar 

  42. K. Balasubramanian, Applications of combinatorics graph theory to quantum chemistry spectroscopy. Chem. Rev. 85, 599–618 (1985)

    Article  CAS  Google Scholar 

  43. K. Balasubramanian, Enumeration of the isomers of the gallium arsenide clusters (GamAsn). Chem. Phys. Lett. 150, 71–77 (1988)

    Article  CAS  Google Scholar 

  44. K. Balasubramanian, Nuclear-spin statistics of C60, C60H60 C60D60. Chem. Phys. Lett. 183, 292–296 (1991)

    Article  CAS  Google Scholar 

  45. K. Balasubramanian, Group theoretical analysis of vibrational modes rovibronic levels of extended aromatic C48N12 azafullerene. Chem. Phys. Lett. 391, 64–68 (2004)

    Article  CAS  Google Scholar 

  46. K. Balasubramanian, A method for nuclear-spin statistics in molecular spectroscopy. J. Chem. Phys. 74, 6824–6829 (1981)

    Article  CAS  Google Scholar 

  47. K. Balasubramanian, Generating functions for the nuclear spin statistics of nonrigid molecules. J. Chem. Phys. 75, 4572–4585 (1981)

    Article  CAS  Google Scholar 

  48. V. Krishnamurthy, Combinatorics: Theory Applications (Harwood, New York, 1985)

    Google Scholar 

  49. K. Balasubramanian, Spectroscopic constants potential energy curves of tungsten carbide. J. Chem. Phys. 112, 7425–7436 (2000)

    Article  CAS  Google Scholar 

  50. K. Balasubramanian, K.S. Pitzer, Electron structure calculations including CI for ten low lying states of Pb2 Sn2. Partition function dissociation energy of Sn2. J. Chem. Phys. 78, 321–327 (1983)

    Article  CAS  Google Scholar 

  51. K. Balasubramanian, Relativistic calculations of electronic states potential energy surfaces of Sn3. J. Chem. Phys. 85, 3401–3406 (1996)

    Article  Google Scholar 

  52. K. Balasubramanian, D.W. Liao, Spectroscopic constants potential energy curves of Bi2 and Bi2. J. Chem. Phys. 95, 3064–3073 (1991)

    Article  CAS  Google Scholar 

  53. K. Balasubramanian, D.G. Dai, Group VI trimers (Se3, Te3, Po3). Electronic states potential energy surfaces. J. Chem. Phys. 99, 5239–5250 (1993)

    Article  CAS  Google Scholar 

  54. K. Balasubramanian, Electronic states of the superheavy element 113 (113) H. Chem. Phys. Lett. 361, 397–404 (2002)

    Article  CAS  Google Scholar 

  55. K. Balasubramanian, Breakdown of the singlet triplet nature of electronic states of the superheavy element 114 dihydride (114H2). J. Chem. Phys. 117, 7426–7432 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Balasubramanian.

Additional information

Dedicated to 150th anniversary celebration of Dmitri Mendeleev’s Discovery of the Periodic Table.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramanian, K. Enumeration of relativistic states for superheavy and transactinide dimers in the periodic table. J Math Chem 58, 458–496 (2020). https://doi.org/10.1007/s10910-019-01098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01098-x

Keywords

Navigation