Skip to main content
Log in

Blast Furnace Ironmaking Process with Super-High TiO2 in the Slag: Viscosity and Melting Properties of the Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To increase the utilization fraction of vanadium titano-magnetite in the blast furnace burden to > 80 pct, a new slag zone with high MgO was found. The effect of the TiO2 content and MgO/CaO mass ratio on the viscosity and liquidus temperature of the high TiO2-bearing blast furnace slag was investigated in the present work. The results indicated that at a fixed CaO/SiO2 ratio of 1.1, the viscosity decreases with increasing TiO2 content at a range of 20 to 34 mass pct. Conversely, increasing the MgO/CaO ratio from 0.32 to 0.65 causes a slight increase in the slag viscosity. The activation energy may show a concomitant variation corresponding to the viscosity of slag. The liquidus temperature first increases and then slightly decreases with TiO2 content. However, the liquidus temperature first decreases and then increases with the MgO/CaO ratio, similar to the variation of the thermodynamic calculation using FactSage software. Various viscosity models were employed to predict the viscosity, and Yan’s model was found to be the most reliable in predicting the viscosity in the present study. In addition, the iso-viscosity distribution diagram was obtained using Yan’s model calculation. It may have potential for application in the blast furnace ironmaking process with super-high (> 80 pct) vanadium titano-magnetite. A suitable slag composition was found to satisfy the smelting process in a blast furnace with super-high TiO2 content at low temperature by using more MgO and less CaO content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang, and W.J. Wang: Miner. Eng., 2011, vol. 24 (8), pp. 864-69.

    Article  CAS  Google Scholar 

  2. L. Zhang, L. Zhang, M. Wang, G. Li and Z. Sui: Min. Eng., 2007, vol. 20, pp. 684-93.

    Article  CAS  Google Scholar 

  3. R. Moskalyk and A. Alfantazi: Miner. Eng., 2003, vol. 16, pp. 793-805.

    Article  CAS  Google Scholar 

  4. J. Xiang, Q. Huang, X. Lv, C. Bai: J. Hazard. Mater., 2017, vol. 336, pp.1-7.

    Article  CAS  Google Scholar 

  5. F. Valighazvini, F. Rashchi, R Khayyam Nekouei: Industrial & Engineering Chemistry Research, 2013, vol. 52, pp. 1723-30.

    Article  CAS  Google Scholar 

  6. X. Zou, X. Lu: Chinese Journal of Nonferrous Metals, 2010, vol. 20, pp. 1829-35.

    Article  CAS  Google Scholar 

  7. Z. Yuan, X. Wang, C. Xu, W. Li and M. Kwauk: Minerals Engineering, 2006, vol. 19, pp. 975-78.

    Article  CAS  Google Scholar 

  8. T. Nagasaka, M. Hino, S. Ban-ya, Met. Trans. B, 2000, vol. 31B, pp. 945.

    Article  CAS  Google Scholar 

  9. N. Saito, N. Hori, K. Nakashima and K. Mori: Metall. Materi. Trans. B, 2003, vol. 34, pp. 509-16.

    Article  Google Scholar 

  10. A. Shankar, M. Gornerup, A. K. Lahiri and S. Seetharaman: Materi. Trans. B, 2007, vol. 38, pp. 911-15.

    Article  Google Scholar 

  11. G. Li, J. Ma, H. Ni, Q. Shen, F. Tsukihashi, ISIJ Int. 2006, vol. 46, pp. 981.

    Article  CAS  Google Scholar 

  12. I. Sohn, W. Wang, H. Matsuura, F. Tsukihashi, D. J. Min: ISIJ Int., 2012, vol. 52, pp. 158-60.

    Article  CAS  Google Scholar 

  13. A. Ohno and H. Ross: Can. Metall. Q., 1963, vol. 2, pp. 259-79.

    Article  CAS  Google Scholar 

  14. H. Park, J. Y. Park, H. Kim and I. Sohn: Steel Res. Int., 2012, vol. 83, pp. 150-56.

    Article  CAS  Google Scholar 

  15. J. L. Liao, J. Li, X. D. Wang and Z. T. Zhang: Ironmak. Steelmak., 2012, vol. 39, pp. 133.

    Article  CAS  Google Scholar 

  16. N. Saito, N. Hori, K. Nakashima, K. Mori: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 509-16.

    Article  CAS  Google Scholar 

  17. Z. Yan, X. Lv, W. He and J. Xiang: ISIJ Int., 2017, vol. 52, pp. 31-36.

    Article  Google Scholar 

  18. Z. Yan, X. Lv, D. Liang, J. Zhang and C. Bai: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1092-99.

    Article  CAS  Google Scholar 

  19. S. Seftharaman, D. Sichen, S. SridharK, and C. Mills: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 111-19.

    Article  Google Scholar 

  20. K. Hu, X. Lv, S. Li, W. Lv, B. Song and K. Han: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1963-73.

    Article  CAS  Google Scholar 

  21. R.G. Duan, K.M. Liang, and G.U. Shouren: Mater. Trans. JIM, 1998, vol. 39, pp. 1162-63.

    Article  CAS  Google Scholar 

  22. B.O. Mysen, F. J. Ryerson, D. Virgo, and F.A. Seifert: Am. Miner.,1980, vol. 65, pp. 1150-65.

    CAS  Google Scholar 

  23. S. Zhang, X. Zhang, H. Peng, L. Wen, G. Qiu, M. Hu and C. Bai: ISIJ Int., 2014, vol. 54, pp. 734-42.

    Article  CAS  Google Scholar 

  24. D. J. Kim, Y.S. Lee, D. J. Min, S. M. Jung and S. H. Yi: ISIJ Int.,2004, vol. 44, pp. 1291-97.

    Article  CAS  Google Scholar 

  25. H. Kim, W. H. Kim, I. Sohn and D. J. Min: Steel Res. Int., 2010, vol. 81, pp. 261-64.

    Article  CAS  Google Scholar 

  26. Z. Yan, R. G. Reddy, X. Lv, Z. Pang and W. He: Ironmak. Steelmak., 2018, vol. 81, pp. 1-7.

    Google Scholar 

  27. P.V. Riboud, Y. Roux, L.D. Lucas, and H. Gaye: Fachber. Huttenpraxis Met., 1981, vol. 19, pp. 859-69.

    CAS  Google Scholar 

  28. G.H. Zhang and K.C. Chou: J. Min. Metall. B, 2012, vol. 48, pp. 433-42.

    Article  Google Scholar 

  29. Mills, K.C. and S. Sridhar: Ironmak. Steelmak., 1999, vol. 26, pp. 262-8.

    Article  CAS  Google Scholar 

  30. G. Urbain: Steel Res. Int., 1987, vol. 58, pp. 111-16.

    Article  CAS  Google Scholar 

  31. Z. Yan, X. Lv, J. Zhang, Y. Qin and C. Bai: Can. Metall. Q., 2016, vol. 55, pp. 186-94.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the National Key R&D Program of China (no. 2018YFC1900500) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 26 August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Z., Lv, X., Jiang, Y. et al. Blast Furnace Ironmaking Process with Super-High TiO2 in the Slag: Viscosity and Melting Properties of the Slag. Metall Mater Trans B 51, 722–731 (2020). https://doi.org/10.1007/s11663-019-01756-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01756-0

Navigation