Skip to main content
Log in

Recent Progress in Asymmetric Relay Catalysis of Metal Complex with Chiral Phosphoric Acid

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Asymmetric metal/organo relay catalysis, utilizing a metal complex and a chiral organocatalyst in a one-pot cascade reaction, is aimed to sequentially impart activation on multiple steps by distinct catalysts. Such a catalysis merges the advantages of both metal catalysis and organocatalysis, providing step-economy, and, more importantly, the potential to achieve inaccessible reactivity by a single catalyst. Chiral phosphoric acids are among the most robust organocatalysts, rendering a broad range of enantioselective bond-forming reactions. The combination of metal complexes and chiral phosphoric acids in a single vessel has been well documented. In particular, the asymmetric relay catalysis of metal complex with chiral phosphoric acid has grown rapidly since 2008. Several excellent reviews have been published to cover almost all examples in this area from 2008 to early 2014; therefore, in this chapter, we will mainly highlight progress from 2014 to mid-2019.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26

Similar content being viewed by others

References

  1. Noyori R (2002) Asymmetric catalysis: science and opportunities (Nobel lecture). Angew Chem Int Ed 41(12):2008–2022

    Article  CAS  Google Scholar 

  2. Heitbaum M, Glorius F, Escher I (2006) Asymmetric heterogeneous catalysis. Angew Chem Int Ed 45(29):4732–4762. https://doi.org/10.1002/anie.200504212

    Article  CAS  Google Scholar 

  3. Fache F, Schulz E, Tommasino ML, Lemaire M (2000) Nitrogen-containing ligands for asymmetric homogeneous and heterogeneous catalysis. Chem Rev 100(6):2159–2231. https://doi.org/10.1021/cr9902897

    Article  CAS  PubMed  Google Scholar 

  4. Cesar V, Bellemin-Laponnaz S, Gade LH (2004) Chiral N-heterocyclic carbenes as stereodirecting ligands in asymmetric catalysis. Chem Soc Rev 33(9):619–636. https://doi.org/10.1039/b406802p

    Article  CAS  PubMed  Google Scholar 

  5. Doyle AG, Jacobsen EN (2007) Small-molecule H-bond donors in asymmetric catalysis. Chem Rev 107(12):5713–5743. https://doi.org/10.1021/cr068373r

    Article  CAS  PubMed  Google Scholar 

  6. Mukherjee S, Yang JW, Hoffmann S, List B (2007) Asymmetric enamine catalysis. Chem Rev 107(12):5471–5569. https://doi.org/10.1021/cr0684016

    Article  CAS  PubMed  Google Scholar 

  7. Lee JM, Na Y, Han H, Chang S (2004) Cooperative multi-catalyst systems for one-pot organic transformations. Chem Soc Rev 33(5):302–312. https://doi.org/10.1039/b309033g

    Article  CAS  PubMed  Google Scholar 

  8. Allen AE, Macmillan DW (2012) Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chem Sci 3:633–658. https://doi.org/10.1039/C2SC00907B

    Article  CAS  Google Scholar 

  9. Chen G, Deng Y, Gong L, Mi A, Cui X, Jiang Y, Choi MCK, Chan ASC (2001) Palladium-catalyzed allylic alkylation of tert-butyl(diphenylmethylene)-glycinate with simple allyl esters under chiral phase transfer conditions. Tetrahedron 12(11):1567–1571. https://doi.org/10.1016/s0957-4166(01)00276-2

    Article  CAS  Google Scholar 

  10. Nakoji M, Kanayama T, Okino T, Takemoto Y (2001) Chiral phosphine-free Pd-mediated asymmetric allylation of prochiral enolate with a chiral phase-transfer catalyst. Org Lett 3(21):3329–3331. https://doi.org/10.1021/ol016567h

    Article  CAS  PubMed  Google Scholar 

  11. Park YJ, Park J-W, Jun C-H (2008) Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery. ACC Chem Res 41(2):222–234. https://doi.org/10.1021/ar700133y

    Article  CAS  PubMed  Google Scholar 

  12. Shao Z, Zhang H (2009) Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chem Soc Rev 38(9):2745–2755. https://doi.org/10.1039/b901258n

    Article  CAS  PubMed  Google Scholar 

  13. Du Z, Shao Z (2013) Combining transition metal catalysis and organocatalysis an update. Chem Soc Rev 42(3):1337–1378. https://doi.org/10.1039/c2cs35258c

    Article  CAS  PubMed  Google Scholar 

  14. Chen DF, Han ZY, Zhou XL, Gong LZ (2014) Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept, and beyond. Acc Chem Res 47(8):2365–2377. https://doi.org/10.1021/ar500101a

    Article  CAS  PubMed  Google Scholar 

  15. Wu X, Li ML, Gong LZ (2013) Asymmetric relay catalysis reaction consisting of metal complex and chiral phosphoric acids. Acta Chim Sinica 71(8):1091–1100. https://doi.org/10.6023/A13030279

    Article  CAS  Google Scholar 

  16. Yang ZP, Zhang W, You SL (2014) Catalytic asymmetric reactions by metal and chiral phosphoric acid sequential catalysis. J Org Chem 79(17):7785–7798. https://doi.org/10.1021/jo501300k

    Article  CAS  PubMed  Google Scholar 

  17. Uraguchi D, Terada M (2004) Chiral Bronsted acid-catalyzed direct Mannich reactions via electrophilic activation. J Am Chem Soc 126(17):5356–5357. https://doi.org/10.1021/ja0491533

    Article  CAS  PubMed  Google Scholar 

  18. Akiyama T, Itoh J, Yokota K, Fuchibe K (2004) Enantioselective Mannich-type reaction catalyzed by a chiral Bronsted acid. Angew Chem Int Ed 43(12):1566–1568. https://doi.org/10.1002/anie.200353240

    Article  CAS  Google Scholar 

  19. Terada M (2010) Chiral phosphoric acids as versatile catalysts for enantioselective transformations. Synthesis 12:1929–1982. https://doi.org/10.1055/s-0029-1218801

    Article  CAS  Google Scholar 

  20. Yu J, Shi F, Gong LZ (2011) Bronsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. ACC Chem Res 44(11):1156–1171. https://doi.org/10.1021/ar2000343

    Article  CAS  PubMed  Google Scholar 

  21. Parmar D, Sugiono E, Raja S, Rueping M (2014) Complete field guide to asymmetric BINOL-phosphate derived Bronsted acid and metal catalysis: history and classification by mode of activation; Bronsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem Rev 114(18):9047–9153. https://doi.org/10.1021/cr5001496

    Article  CAS  PubMed  Google Scholar 

  22. Wu H, He YP, Shi F (2015) Recent advances in chiral phosphoric acid catalyzed asymmetric reactions for the synthesis of enantiopure indole derivatives. Synthesis 47(14):1990–2016. https://doi.org/10.1055/s-0034-1378837

    Article  CAS  Google Scholar 

  23. Han ZY, Gong LZ (2018) Asymmetric organo/palladium combined catalysis. Prog Chem 30(5):505–512. https://doi.org/10.7536/Pc171206

    Article  Google Scholar 

  24. Inamdar SM, Konala A, Patil NT (2014) When gold meets chiral Bronsted acid catalysts: extending the boundaries of enantioselective gold catalysis. Chem Commun 50(96):15124–15135. https://doi.org/10.1039/c4cc04633a

    Article  CAS  Google Scholar 

  25. Escoubet S, Gastaldi S, Bertrand M (2005) Methods for the cleavage of allylic and propargylic C–N bonds in amines and amides-selected alternative applications of the 1,3-hydrogen shift. Eur J Org Chem 18:3855–3873. https://doi.org/10.1002/ejoc.200500204

    Article  CAS  Google Scholar 

  26. Sorimachi K, Terada M (2008) Relay catalysis by a metal-complex/Bronsted acid binary system in a tandem isomerization/carbon-carbon bond forming sequence. J Am Chem Soc 130(44):14452–14453. https://doi.org/10.1021/ja807591m

    Article  CAS  PubMed  Google Scholar 

  27. Cai Q, Liang XW, Wang SG, You SL (2013) An olefin isomerization/asymmetric Pictet-Spengler cascade via sequential catalysis of ruthenium alkylidene and chiral phosphoric acid. Org Biomol Chem 11(10):1602–1605. https://doi.org/10.1039/c3ob00072a

    Article  CAS  PubMed  Google Scholar 

  28. Hansen CL, Clausen JW, Ohm RG, Ascic E, Le Quement ST, Tanner D, Nielsen TE (2013) Ruthenium hydride/Bronsted acid-catalyzed tandem isomerization/N-acyliminium cyclization sequence for the synthesis of tetrahydro-beta-carbolines. J Org Chem 78(24):12545–12565. https://doi.org/10.1021/jo402192s

    Article  CAS  PubMed  Google Scholar 

  29. Toda Y, Terada M (2013) Relay catalysis by a ruthenium complex-chiral bronsted acid binary sytem for ternary reaction sequence involving enantioselective pictet-spengler-type cyclization as the key step. Synlett 24(6):752–756. https://doi.org/10.1055/s-0032-1318302

    Article  CAS  Google Scholar 

  30. Bernardez R, Suarez J, Fananas-Mastral M, Varela JA, Saá C (2016) Tandem long distance chain-walking/cyclization via RuH2(CO)(PPh3)3/Bronsted acid catalysis: entry to aromatic oxazaheterocycles. Org Lett 18(4):642–645. https://doi.org/10.1021/acs.orglett.5b03499

    Article  CAS  PubMed  Google Scholar 

  31. Terada M, Toda Y (2009) Double bond isomerization/enantioselective aza-Petasis-Ferrier rearrangement sequence as an efficient entry to anti- and enantioenriched beta-amino aldehydes. J Am Chem Soc 131(18):6354–6355. https://doi.org/10.1021/ja902202g

    Article  CAS  PubMed  Google Scholar 

  32. Richmond E, Khan IU, Moran J (2016) Enantioselective and regiodivergent functionalization of n-allylcarbamates by mechanistically divergent multicatalysis. Chem Eur J 22(35):12274–12277. https://doi.org/10.1002/chem.201602792

    Article  CAS  PubMed  Google Scholar 

  33. Miura T, Nishida Y, Morimoto M, Murakami M (2013) Enantioselective synthesis of anti homoallylic alcohols from terminal alkynes and aldehydes based on concomitant use of a cationic iridium complex and a chiral phosphoric acid. J Am Chem Soc 135(31):11497–11500. https://doi.org/10.1021/ja405790t

    Article  CAS  PubMed  Google Scholar 

  34. Miura T, Nakahashi J, Murakami M (2017) Enantioselective synthesis of (e)-delta-boryl-substituted anti-homoallylic alcohols using palladium and a chiral phosphoric acid. Angew Chem Int Ed 56(24):6989–6993. https://doi.org/10.1002/anie.201702611

    Article  CAS  Google Scholar 

  35. Miura T, Nakahashi J, Zhou W, Shiratori Y, Stewart SG, Murakami M (2017) Enantioselective synthesis of anti-1,2-Oxaborinan-3-enes from aldehydes and 1,1-di(boryl)alk-3-enes using ruthenium and chiral phosphoric acid catalysts. J Am Chem Soc 139(31):10903–10908. https://doi.org/10.1021/jacs.7b06408

    Article  CAS  PubMed  Google Scholar 

  36. Schuster M, Blechert S (1997) Olefin metathesis in organic chemistry. Angew Chem Int Ed 36(19):2037–2056. https://doi.org/10.1002/anie.199720361

    Article  CAS  Google Scholar 

  37. Furstner A (2000) Olefin metathesis and beyond a list of abbreviations can be found at the end of this article. Angew Chem Int Ed 39(17):3012–3043

    Article  CAS  Google Scholar 

  38. Grubbs RH (2004) Olefin metathesis. Tetrahedron 60(34):7117–7140. https://doi.org/10.1016/j.tet.2004.05.124

    Article  CAS  Google Scholar 

  39. Vougioukalakis GC, Grubbs RH (2010) Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem Rev 110(3):1746–1787. https://doi.org/10.1021/cr9002424

    Article  CAS  PubMed  Google Scholar 

  40. Cai Q, Zhao ZA, You SL (2009) Asymmetric construction of polycyclic indoles through olefin cross-metathesis/intramolecular Friedel-Crafts alkylation under sequential catalysis. Angew Chem Int Ed 48(40):7428–7431. https://doi.org/10.1002/anie.200903462

    Article  CAS  Google Scholar 

  41. Cai Q, Liang XW, Wang SG, Zhang JW, Zhang X, You SL (2012) Ring-closing metathesis/isomerization/Pictet-Spengler cascade via ruthenium/chiral phosphoric acid sequential catalysis. Org Lett 14(19):5022–5025. https://doi.org/10.1021/ol302215u

    Article  CAS  PubMed  Google Scholar 

  42. You S-L, Zhou Y, Liu X-W, Gu Q (2015) Enantioselective synthesis of tetrahydroindolizines via ruthenium-chiral phosphoric acid sequential catalysis. Synlett 27(04):586–590. https://doi.org/10.1055/s-0035-1560485

    Article  CAS  Google Scholar 

  43. Zhang JW, Liu XW, Gu Q, Shi XX, You SL (2015) Enantioselective synthesis of 4,5,6,7-tetrahydroindoles via olefin cross-metathesis/intramolecular Friedel-Crafts alkylation reaction of pyrroles. Org Chem Front 2(5):476–480. https://doi.org/10.1039/c5qo00034c

    Article  CAS  Google Scholar 

  44. Ascic E, Jensen JF, Nielsen TE (2011) Synthesis of heterocycles through a ruthenium-catalyzed tandem ring-closing metathesis/isomerization/N-acyliminium cyclization sequence. Angew Chem Int Ed 50(22):5188–5191. https://doi.org/10.1002/anie.201100417

    Article  CAS  Google Scholar 

  45. Shi YC, Wang SG, Yin Q, You SL (2014) N-alkylation of indole via ring-closing metathesis/isomerization/Mannich cascade under ruthenium/chiral phosphoric acid sequential catalysis. Org Chem Front 1(1):39–43. https://doi.org/10.1039/c3qo00008g

    Article  CAS  Google Scholar 

  46. Inamdar SM, Chakrabarty I, Patil NT (2016) A unified approach to pyrrole-embedded aza-heterocyclic scaffolds based on the RCM/isomerization/cyclization cascade catalyzed by a Ru/B-H binary catalyst system. RSC Adv 6(41):34428–34433. https://doi.org/10.1039/c6ra05646f

    Article  CAS  Google Scholar 

  47. Han ZY, Xiao H, Chen XH, Gong LZ (2009) Consecutive intramolecular hydroamination/asymmetric transfer hydrogenation under relay catalysis of an achiral gold complex/chiral Bronsted acid binary system. J Am Chem Soc 131(26):9182–9183. https://doi.org/10.1021/ja903547q

    Article  CAS  PubMed  Google Scholar 

  48. Liu XY, Che CM (2009) Highly enantioselective synthesis of chiral secondary amines by gold(I)/chiral Bronsted acid catalyzed tandem intermolecular hydroamination and transfer hydrogenation reactions. Org Lett 11(18):4204–4207. https://doi.org/10.1021/ol901443b

    Article  CAS  PubMed  Google Scholar 

  49. Shinde VS, Mane MV, Vanka K, Mallick A, Patil NT (2015) Gold(I)/chiral Bronsted acid catalyzed enantioselective hydroamination-hydroarylation of alkynes: the effect of a remote hydroxyl group on the reactivity and enantioselectivity. Chem Eur J 21(3):975–979. https://doi.org/10.1002/chem.201405061

    Article  CAS  PubMed  Google Scholar 

  50. Zhao F, Li N, Zhu YF, Han ZY (2016) Enantioselective construction of functionalized tetrahydrocarbazoles enabled by asymmetric relay catalysis of gold complex and chiral Bronsted acid. Org Lett 18(7):1506–1509. https://doi.org/10.1021/acs.orglett.6b00012

    Article  CAS  PubMed  Google Scholar 

  51. Han ZY, Guo R, Wang PS, Chen DF, Xiao H, Gong LZ (2011) Enantioselective concomitant creation of vicinal quaternary stereogenic centers via cyclization of alkynols triggered addition of azlactones. Tetrahedron Lett 52(45):5963–5967. https://doi.org/10.1016/j.tetlet.2011.08.123

    Article  CAS  Google Scholar 

  52. Cala L, Mendoza A, Fananas FJ, Rodriguez F (2013) A catalytic multicomponent coupling reaction for the enantioselective synthesis of spiroacetals. Chem Commun 49(26):2715–2717. https://doi.org/10.1039/c3cc00118k

    Article  CAS  Google Scholar 

  53. Wu H, He YP, Gong LZ (2013) Direct access to enantioenriched spiroacetals through asymmetric relay catalytic three-component reaction. Org Lett 15(3):460–463. https://doi.org/10.1021/ol303188u

    Article  CAS  PubMed  Google Scholar 

  54. Han ZY, Chen DF, Wang YY, Guo R, Wang PS, Wang C, Gong LZ (2012) Hybrid metal/organo relay catalysis enables enynes to be latent dienes for asymmetric Diels-Alder reaction. J Am Chem Soc 134(15):6532–6535. https://doi.org/10.1021/ja3007148

    Article  CAS  PubMed  Google Scholar 

  55. Wang PS, Li KN, Zhou XL, Wu X, Han ZY, Guo R, Gong LZ (2013) Enantioselective relay catalytic cascade intramolecular hydrosiloxylation and Mukaiyama aldol reaction. Chem Eur J 19(20):6234–6238. https://doi.org/10.1002/chem.201300702

    Article  CAS  PubMed  Google Scholar 

  56. Gong L-Z, Li N, Chen D-F, Wang P-S, Han Z-Y (2014) Relay catalytic cascade hydrosiloxylation and asymmetric Hetero-Diels–Alder reaction. Synthesis 46(10):1355–1361. https://doi.org/10.1055/s-0033-1340905

    Article  CAS  Google Scholar 

  57. Wu X, Li ML, Wang PS (2014) Hybrid gold/chiral Bronsted acid relay catalysis allows an enantioselective synthesis of (-)-5-epi-eupomatilone-6. J Org Chem 79(1):419–425. https://doi.org/10.1021/jo4024232

    Article  CAS  PubMed  Google Scholar 

  58. Rexit AA, Mailikezati M (2015) Asymmetric synthesis of optically active spiroacetals from alkynyl glycols catalyzed by gold complex/Bronsted acid binary system. Tetrahedron Lett 56(21):2651–2655. https://doi.org/10.1016/j.tetlet.2015.03.007

    Article  CAS  Google Scholar 

  59. Inamdar SM, Gonnade RG, Patil NT (2017) Synthesis of annulated bis-indoles through Au(i)/Bronsted acid-catalyzed reactions of (1H-indol-3-yl)(aryl)methanols with 2-(arylethynyl)-1H-indoles. Org Biomol Chem 15(4):863–869. https://doi.org/10.1039/c6ob02595a

    Article  CAS  PubMed  Google Scholar 

  60. Qian D, Zhang J (2013) Gold/Bronsted acid relay catalysis for enantioselective construction of spirocyclic diketones. Chem Eur J 19(22):6984–6988. https://doi.org/10.1002/chem.201301208

    Article  CAS  PubMed  Google Scholar 

  61. Liu RR, Ye SC, Lu CJ, Zhuang GL, Gao JR, Jia YX (2015) Dual catalysis for the redox annulation of nitroalkynes with indoles: enantioselective construction of indolin-3-ones bearing quaternary stereocenters. Angew Chem Int Ed 54(38):11205–11208. https://doi.org/10.1002/anie.201504697

    Article  CAS  Google Scholar 

  62. Villa-Marcos B, Xiao JL (2015) Metal and organo-catalysed asymmetric hydroaminomethylation of styrenes. Chin J Catal 36(1):106–112. https://doi.org/10.1016/S1872-2067(14)60246-1

    Article  CAS  Google Scholar 

  63. Meng J, Li XH, Han ZY (2017) Enantioselective hydroaminomethylation of olefins enabled by Rh/Bronsted acid relay catalysis. Org Lett 19(5):1076–1079. https://doi.org/10.1021/acs.orglett.7b00100

    Article  CAS  PubMed  Google Scholar 

  64. Meng J, Fan L-F, Han Z-Y, Gong L-Z (2018) α-quaternary chiral aldehydes from styrenes, allylic alcohols, and syngas via multi-catalyst relay catalysis. Chem 4(5):1047–1058. https://doi.org/10.1016/j.chempr.2018.03.010

    Article  CAS  Google Scholar 

  65. Li LL, Su YL, Han ZY, Gong LZ (2018) Assembly of tetrahydropyran derivatives from aldehydes, allylboronates, and syngas by asymmetric relay catalytic cascade reaction. Chem Eur J 24(30):7626–7630. https://doi.org/10.1002/chem.201801197

    Article  CAS  PubMed  Google Scholar 

  66. Chen QA, Chen MW, Yu CB, Shi L, Wang DS, Yang Y, Zhou YG (2011) Biomimetic asymmetric hydrogenation: in situ regenerable Hantzsch esters for asymmetric hydrogenation of benzoxazinones. J Am Chem Soc 133(41):16432–16435. https://doi.org/10.1021/ja208073w

    Article  CAS  PubMed  Google Scholar 

  67. Chen QA, Wang DS, Zhou YG, Duan Y, Fan HJ, Yang Y, Zhang Z (2011) Convergent asymmetric disproportionation reactions: metal/Bronsted acid relay catalysis for enantioselective reduction of quinoxalines. J Am Chem Soc 133(16):6126–6129. https://doi.org/10.1021/ja200723n

    Article  CAS  PubMed  Google Scholar 

  68. Chen QA, Gao K, Duan Y, Ye ZS, Shi L, Yang Y, Zhou YG (2012) Dihydrophenanthridine: a new and easily regenerable NAD(P)H model for biomimetic asymmetric hydrogenation. J Am Chem Soc 134(4):2442–2448. https://doi.org/10.1021/ja211684v

    Article  CAS  PubMed  Google Scholar 

  69. Lu LQ, Li Y, Junge K, Beller M (2015) Relay iron/chiral Bronsted acid catalysis: enantioselective hydrogenation of benzoxazinones. J Am Chem Soc 137(7):2763–2768. https://doi.org/10.1021/jacs.5b00085

    Article  CAS  PubMed  Google Scholar 

  70. Chen ZP, Chen MW, Guo RN, Zhou YG (2014) 4,5-Dihydropyrrolo[1,2-a]quinoxalines: a tunable and regenerable biomimetic hydrogen source. Org Lett 16(5):1406–1409. https://doi.org/10.1021/ol500176v

    Article  CAS  PubMed  Google Scholar 

  71. Duhamel L, Duhamel P, Plaquevent J-C (2004) Enantioselective protonations: fundamental insights and new concepts. Tetrahedron 15(23):3653–3691

    Article  CAS  Google Scholar 

  72. Ren YY, Zhu SF, Zhou QL (2018) Chiral proton-transfer shuttle catalysts for carbene insertion reactions. Org Biomol Chem 16(17):3087–3094. https://doi.org/10.1039/c8ob00473k

    Article  CAS  PubMed  Google Scholar 

  73. Xu B, Zhu SF, Xie XL, Shen JJ, Zhou QL (2011) Asymmetric N-H insertion reaction cooperatively catalyzed by rhodium and chiral spiro phosphoric acids. Angew Chem Int Ed 50(48):11483–11486. https://doi.org/10.1002/anie.201105485

    Article  CAS  Google Scholar 

  74. Xu B, Zhu SF, Zuo XD, Zhang ZC, Zhou QL (2014) Enantioselective N-H insertion reaction of alpha-aryl alpha-diazoketones: an efficient route to chiral alpha-aminoketones. Angew Chem Int Ed 53(15):3913–3916. https://doi.org/10.1002/anie.201400236

    Article  CAS  Google Scholar 

  75. Xu B, Zhu S-F, Zhang Z-C, Yu Z-X, Ma Y, Zhou Q-L (2014) Highly enantioselective S-H bond insertion cooperatively catalyzed by dirhodium complexes and chiral spiro phosphoric acids. Chem Sci 5(4):1442–1448. https://doi.org/10.1039/c3sc52807c

    Article  CAS  Google Scholar 

  76. Zhang Y, Yao Y, He L, Liu Y, Shi L (2017) Rhodium(II)/chiral phosphoric acid-cocatalyzed enantioselective O-H bond insertion of α-diazo esters. Adv Synth Catal 359(16):2754–2761. https://doi.org/10.1002/adsc.201700572

    Article  CAS  Google Scholar 

  77. Xu B, Li ML, Zuo XD, Zhu SF, Zhou QL (2015) Catalytic asymmetric arylation of alpha-aryl-alpha-diazoacetates with aniline derivatives. J Am Chem Soc 137(27):8700–8703. https://doi.org/10.1021/jacs.5b05086

    Article  CAS  PubMed  Google Scholar 

  78. Zhao F, Li N, Zhang T, Han ZY, Luo SW, Gong LZ (2017) Enantioselective Aza-Ene-type reactions of enamides with gold carbenes generated from alpha-diazoesters. Angew Chem Int Ed 56(12):3247–3251. https://doi.org/10.1002/anie.201612208

    Article  CAS  Google Scholar 

  79. Ding W, Zhou QQ, Xuan J, Li TR, Lu LQ, Xiao WJ (2014) Photocatalytic aerobic oxidation/semipinacol rearrangement sequence: a concise route to the core of pseudoindoxyl alkaloids. Tetrahedron Lett 55(33):4648–4652. https://doi.org/10.1016/j.tetlet.2014.06.102

    Article  CAS  Google Scholar 

  80. Yu P, Lin JS, Li L, Zheng SC, Xiong YP, Zhao LJ, Tan B, Liu XY (2014) Enantioselective C-H bond functionalization triggered by radical trifluoromethylation of unactivated alkene. Angew Chem Int Ed 53(44):11890–11894. https://doi.org/10.1002/anie.201405401

    Article  CAS  Google Scholar 

  81. Li T, Yu P, Du Y-M, Lin J-S, Zhi Y, Liu X-Y (2017) Enantioselective α-C-H functionalization of amides with indoles triggered by radical trifluoromethylation of alkenes: highly selective formation of C CF3 and C C bonds. J Fluor Chem 203:210–214. https://doi.org/10.1016/j.jfluchem.2017.03.008

    Article  CAS  Google Scholar 

  82. Lin JS, Li TT, Liu JR, Jiao GY, Gu QS, Cheng JT, Guo YL, Hong X, Liu XY (2019) Cu/chiral phosphoric acid-catalyzed asymmetric three-component radical-initiated 1,2-dicarbofunctionalization of alkenes. J Am Chem Soc 141(2):1074–1083. https://doi.org/10.1021/jacs.8b11736

    Article  CAS  PubMed  Google Scholar 

  83. Yu Q, Fu Y, Huang J, Qin J, Zuo H, Wu Y, Zhong F (2019) Enantioselective oxidative phenol-indole [3 + 2] coupling enabled by biomimetic Mn(III)/brønsted acid relay catalysis. ACS Catal 9:7285–7291. https://doi.org/10.1021/acscatal.9b01734

    Article  CAS  Google Scholar 

  84. Gebauer K, Reuss F, Spanka M, Schneider C (2017) Relay catalysis: manganese(III) phosphate catalyzed asymmetric addition of beta-dicarbonyls to ortho-quinone methides generated by catalytic aerobic oxidation. Org Lett 19(17):4588–4591. https://doi.org/10.1021/acs.orglett.7b02185

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu-Zhu Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Asymmetric Organocatalysis Combined with Metal Catalysis”; edited by Bruce A. Arndtsen, Liu-Zhu Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, PS., Chen, DF. & Gong, LZ. Recent Progress in Asymmetric Relay Catalysis of Metal Complex with Chiral Phosphoric Acid. Top Curr Chem (Z) 378, 9 (2020). https://doi.org/10.1007/s41061-019-0263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0263-2

Keywords

Navigation