Skip to main content

Advertisement

Log in

Targetable molecular alterations in congenital glioblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Congenital glioblastomas (cGBMs) are uncommon tumors presenting in early infancy, variably defined as diagnosed at birth or at age less than 3 months by strict criteria, or more loosely, as occurring in very young children less than 12 months of age. Previous studies have shown that cGBMs are histologically indistinguishable from GBMs in older children or adults, but may have a more favorable clinical outcome, suggesting biological differences between congenital versus other GBMs. Due to the infrequency of cGBMs, especially when employing strict inclusion criteria, molecular features have not been sufficiently explored.

Methods

Archer FusionPlex Solid Tumor Kit, Archer VariantPlex Solid Tumor Kit, Illumina RNAseq were utilized to study cGBMs seen at our institution since 2002. A strict definition for cGBM was utilized, with only infants less than age 3 months at clinical presentation sought for this study.

Results

Of the 8 cGBM cases identified in our files, 7 had sufficient materials for molecular analyses, and 3 of 7 cases analyzed showed fusions of the ALK gene (involving MAP4, MZT2Bex2 and EML4 genes as fusion partners). One case showed ROS1 fusion. Somatic mutations in TSC22D1, BMG1 and DGCR6 were identified in 1 case. None of the cases showed alterations in IDH1/2, histone genes, or the TERT gene, alterations which can be associated with GBMs in older children or adults.

Conclusions

Our results show that cGBMs are genetically heterogeneous and biologically different from pediatric and adult GBMs. Identification of ALK and ROS1 raise the possibility of targeted therapy with FDA-approved targeted inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Solitare GB, Krigman MR (1964) Congenital intracranial neoplasm. A case report and review of the literature. J Neuropathol Exp Neurol 23:280–292

    Article  CAS  PubMed  Google Scholar 

  2. Anestis DM, Tsitsopoulos PP, Ble CA, Tsitouras V, Tsonidis CA (2017) Congenital glioblastoma multiforme: an unusual and challenging tumor. Neuropediatrics 48:403–412. https://doi.org/10.1055/s-0037-1601858

    Article  PubMed  Google Scholar 

  3. Cocce MC, Mardin BR, Bens S, Stutz AM, Lubieniecki F, Vater I, Korbel JO, Siebert R, Alonso CN, Gallego MS (2016) Identification of ZCCHC8 as fusion partner of ROS1 in a case of congenital glioblastoma multiforme with a t(6;12)(q21;q24.3). Genes Chromosom Cancer 55:677–687. https://doi.org/10.1002/gcc.22369

    Article  CAS  PubMed  Google Scholar 

  4. Isaacs H Jr (2016) Perinatal (fetal and neonatal) astrocytoma: a review. Childs Nerv Syst 32:2085–2096. https://doi.org/10.1007/s00381-016-3215-y

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kameda M, Otani Y, Ichikawa T, Shimada A, Ichimura K, Date I (2017) Congenital glioblastoma with distinct clinical and molecular characteristics: case reports and a literature review. World Neurosurg 101:817. https://doi.org/10.1016/j.wneu.2017.02.026

    Article  PubMed  Google Scholar 

  6. Lake JA, Donson AM, Prince E, Davies KD, Nellan A, Green AL, Mulcahy Levy J, Dorris K, Vibhakar R, Hankinson TC, Foreman NK, Ewalt MD, Kleinschmidt-DeMasters BK, Hoffman LM, Gilani A (2019) Targeted fusion analysis can aid in the classification and treatment of pediatric glioma, ependymoma, and glioneuronal tumors. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.28028

    Article  PubMed  PubMed Central  Google Scholar 

  7. Macy ME, Birks DK, Barton VN, Chan MH, Donson AM, Kleinschmidt-Demasters BK, Bemis LT, Handler MH, Foreman NK (2012) Clinical and molecular characteristics of congenital glioblastoma. Neuro Oncol 14:931–941. https://doi.org/10.1093/neuonc/nos125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Milano GM, Cerri C, Ferruzzi V, Capolsini I, Mastrodicasa E, Genitori L, Aversa F (2009) Congenital glioblastoma. Pediatr Blood Cancer 53:124–126. https://doi.org/10.1002/pbc.22008

    Article  CAS  PubMed  Google Scholar 

  9. Ng A, Levy ML, Malicki DM, Crawford JR (2019) Unusual high-grade and low-grade glioma in an infant with PPP1CB-ALK gene fusion. BMJ Case Rep. https://doi.org/10.1136/bcr-2018-228248

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nsir AB, Darmoul M, Hadhri R, Hattab N (2017) Congenital glioblastoma: lessons learned from a rare case with unusual presentation. Turk Neurosurg 27:464–467. https://doi.org/10.5137/1019-5149.JTN.13047-14.3

    Article  PubMed  Google Scholar 

  11. Olsen TK, Panagopoulos I, Meling TR, Micci F, Gorunova L, Thorsen J, Due-Tonnessen B, Scheie D, Lund-Iversen M, Krossnes B, Saxhaug C, Heim S, Brandal P (2015) Fusion genes with ALK as recurrent partner in ependymoma-like gliomas: a new brain tumor entity? Neuro Oncol 17:1365–1373. https://doi.org/10.1093/neuonc/nov039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shimamura N, Asano K, Ogane K, Yagihashi A, Ohkuma H, Suzuki S (2003) A case of definitely congenital glioblastoma manifested by intratumoral hemorrhage. Childs Nerv Syst 19:778–781. https://doi.org/10.1007/s00381-003-0807-0

    Article  PubMed  Google Scholar 

  13. Thankamony A, Harlow FH, Ponnampalam J, Clarke P (2007) Congenital brain tumour mimicking fetal intracranial haemorrhage. J Obstet Gynaecol 27:314–317. https://doi.org/10.1080/01443610701241217

    Article  CAS  PubMed  Google Scholar 

  14. Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, Verhaak RG (2015) The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene 34:4845–4854. https://doi.org/10.1038/onc.2014.406

    Article  CAS  PubMed  Google Scholar 

  15. Guerreiro Stucklin AS, Ryall S, Fukuoka K, Zapotocky M, Lassaletta A, Li C, Bridge T, Kim B, Arnoldo A, Kowalski PE, Zhong Y, Johnson M, Li C, Ramani AK, Siddaway R, Nobre LF, de Antonellis P, Dunham C, Cheng S, Boue DR, Finlay JL, Coven SL, de Prada I, Perez-Somarriba M, Faria CC, Grotzer MA, Rushing E, Sumerauer D, Zamecnik J, Krskova L, Garcia Ariza M, Cruz O, Morales La Madrid A, Solano P, Terashima K, Nakano Y, Ichimura K, Nagane M, Sakamoto H, Gil-da-Costa MJ, Silva R, Johnston DL, Michaud J, Wilson B, van Landeghem FKH, Oviedo A, McNeely PD, Crooks B, Fried I, Zhukova N, Hansford JR, Nageswararao A, Garzia L, Shago M, Brudno M, Irwin MS, Bartels U, Ramaswamy V, Bouffet E, Taylor MD, Tabori U, Hawkins C (2019) Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 10:4343. https://doi.org/10.1038/s41467-019-12187-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brat DJ, Shehata BM, Castellano-Sanchez AA, Hawkins C, Yost RB, Greco C, Mazewski C, Janss A, Ohgaki H, Perry A (2007) Congenital glioblastoma: a clinicopathologic and genetic analysis. Brain Pathol 17:276–281. https://doi.org/10.1111/j.1750-3639.2007.00071.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benelli M, Pescucci C, Marseglia G, Severgnini M, Torricelli F, Magi A (2012) Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript. Bioinformatics 28:3232–3239. https://doi.org/10.1093/bioinformatics/bts617

    Article  CAS  PubMed  Google Scholar 

  18. Whiteway SL, Betts AM, O’Neil ER, Green AL, Gilani A, Orr BA, Mathis DA (2020) Oncogenic GOPC-ROS1 fusion identified in a congenital glioblastoma case. J Pediatr Hematol Oncol (accepted for publication)

  19. Nakashiro K, Kawamata H, Hino S, Uchida D, Miwa Y, Hamano H, Omotehara F, Yoshida H, Sato M (1998) Down-regulation of TSC-22 (transforming growth factor beta-stimulated clone 22) markedly enhances the growth of a human salivary gland cancer cell line in vitro and in vivo. Cancer Res 58:549–555

    CAS  PubMed  Google Scholar 

  20. El-Ayadi M, Ansari M, Sturm D, Gielen GH, Warmuth-Metz M, Kramm CM, von Bueren AO (2017) High-grade glioma in very young children: a rare and particular patient population. Oncotarget 8:64564–64578. https://doi.org/10.18632/oncotarget.18478

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, Kleinschmidt-DeMasters BK, Perry A, Reifenberger G, Stupp R, von Deimling A, Weller M (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol 136:805–810. https://doi.org/10.1007/s00401-018-1913-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol 14(Suppl 5):v1–49. https://doi.org/10.1093/neuonc/nos218

    Article  PubMed  PubMed Central  Google Scholar 

  23. Korshunov A, Ryzhova M, Hovestadt V, Bender S, Sturm D, Capper D, Meyer J, Schrimpf D, Kool M, Northcott PA, Zheludkova O, Milde T, Witt O, Kulozik AE, Reifenberger G, Jabado N, Perry A, Lichter P, von Deimling A, Pfister SM, Jones DT (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129:669–678. https://doi.org/10.1007/s00401-015-1405-4

    Article  CAS  PubMed  Google Scholar 

  24. Davis T, Doyle H, Tobias V, Ellison DW, Ziegler DS (2016) Case report of spontaneous resolution of a congenital glioblastoma. Pediatrics. https://doi.org/10.1542/peds.2015-1241

    Article  PubMed  PubMed Central  Google Scholar 

  25. Scheuermann A, Belongia M, Lawlor MW, Suchi M, Kaufman B, Vasudevaraja V, Serrano J, Snuderl M, Knipstein J (2019) Ganglioglioma in a survivor of infantile glioblastoma. J Pediatr Hematol Oncol. https://doi.org/10.1097/MPH.0000000000001417

    Article  Google Scholar 

  26. Johnson A, Severson E, Gay L, Vergilio JA, Elvin J, Suh J, Daniel S, Covert M, Frampton GM, Hsu S, Lesser GJ, Stogner-Underwood K, Mott RT, Rush SZ, Stanke JJ, Dahiya S, Sun J, Reddy P, Chalmers ZR, Erlich R, Chudnovsky Y, Fabrizio D, Schrock AB, Ali S, Miller V, Stephens PJ, Ross J, Crawford JR, Ramkissoon SH (2017) Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist 22:1478–1490. https://doi.org/10.1634/theoncologist.2017-0242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davies KD, Doebele RC (2013) Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 19:4040–4045. https://doi.org/10.1158/1078-0432.CCR-12-2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shaw AT, Engelman JA (2013) ALK in lung cancer: past, present, and future. J Clin Oncol 31:1105–1111. https://doi.org/10.1200/JCO.2012.44.5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Camidge DR, Doebele RC (2012) Treating ALK-positive lung cancer–early successes and future challenges. Nat Rev Clin Oncol 9:268–277. https://doi.org/10.1038/nrclinonc.2012.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J, Bauer TM, Farago AF, Wheler JJ, Liu SV, Doebele R, Giannetta L, Cerea G, Marrapese G, Schirru M, Amatu A, Bencardino K, Palmeri L, Sartore-Bianchi A, Vanzulli A, Cresta S, Damian S, Duca M, Ardini E, Li G, Christiansen J, Kowalski K, Johnson AD, Patel R, Luo D, Chow-Maneval E, Hornby Z, Multani PS, Shaw AT, De Braud FG (2017) Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov 7:400–409. https://doi.org/10.1158/2159-8290.CD-16-1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laetsch TW, DuBois SG, Mascarenhas L, Turpin B, Federman N, Albert CM, Nagasubramanian R, Davis JL, Rudzinski E, Feraco AM, Tuch BB, Ebata KT, Reynolds M, Smith S, Cruickshank S, Cox MC, Pappo AS, Hawkins DS (2018) Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol 19:705–714. https://doi.org/10.1016/S1470-2045(18)30119-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the UCD Molecular Pathology Shared Resource (MPSR) and the UCD Genomics and Microarray Core (National Cancer Institute Cancer Center Support Grant No. P30-CA046934). Additional financial assistance was received from the Morgan Adams Foundation, and the Olivia Caldwell Foundation.

Author information

Authors and Affiliations

Authors

Contributions

AD, KDD, SLW, JL, JDS, LH, NKF, BKKDM, ALG, and AG: Substantial contributions to the conception and design of the study; acquisition, analysis, and interpretation of data; AD, KDD, BKKDM and AG provided images for figures. AD, NKF and AG prepared the manuscript. AG, AD, NKF, BKKDM and ALG: critical manuscript review and revisions. AG: Contribution as per journal requirements; KDD: Supervised molecular testing, provided images of fusion breakpoints for figure.

Corresponding author

Correspondence to Ahmed Gilani.

Ethics declarations

Conflict of interest

Kurt D. Davis has received sponsored travel from ArcherDx. Other authors report no conflicts of interest related to this study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Human and animal rights statement

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilani, A., Donson, A., Davies, K.D. et al. Targetable molecular alterations in congenital glioblastoma. J Neurooncol 146, 247–252 (2020). https://doi.org/10.1007/s11060-019-03377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03377-8

Keywords

Navigation