Skip to main content
Log in

Kinetics of methane electrooxidation in pure and composite anodes of La0.3Y0.1Sr0.4TiO3−δ

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical characteristics of electrolyte-supported solid oxide fuel cells containing pure perovskite anode of La0.3Y0.1Sr0.4TiO3δ, (LYSTA-) and composite anodes with varying fractions (30 and 50 wt%) of yttria-stabilized zirconia (YSZ), LYSTA- (30)YSZ and LYSTA- (50)YSZ, were studied in humidified methane. The 8 wt% CeO2 and 4 wt% NiO, denoted as (84), were impregnated into the pure and composite anodes for efficient electrooxidation of methane. The studies were carried out to qualitatively estimate the kinetic parameter, exchange current density (io), for methane electrooxidation. Evaluation in a 3-electrode configuration with an asymmetric reference electrode yielded the following activity trend: (84)LYSTA- > (84)LYSTA- (30)YSZ > (84)LYSTA- (50)YSZ in the high-overpotential region, with io values of 133.2 ± 32.5, 40.8 ± 16.6, and 47.9 ± 16.3 mA cm−2 at 900 °C, respectively. The presence of YSZ in the composite anodes leads to decrease in io and degrading performance. Impedance studies clubbed with equivalent circuit modeling along with physical characterization were used to account for decreased io values in composite anodes. Metal support interactions arising between Ni and CeO2 are studied using a high-resolution transmission electron microscope. Solid oxide fuel cell (SOFC) studies with (84)LYSTA- anode yielded a maximum power density of 591 mW cm−2 in hydrogen and 429 mW cm−2 in methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen-Wiegart YK, Kennouche D, Scott Cronin J, Barnett SA, Wang J (2016) Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes. Appl Phys Lett 108:083903

    Google Scholar 

  2. Besra L, Zha S, Liu M (2006) Preparation of NiO-YSZ/YSZ bi-layers for solid oxide fuel cells by electrophoretic deposition. J Power Sources 160:207–214

    CAS  Google Scholar 

  3. He H, Hill JM (2007) Carbon deposition on Ni/YSZ composites exposed to humidified methane. Appl Catal A Gen 317:284–292

    CAS  Google Scholar 

  4. Lanzini A, Leone P, Guerra C, Smeacetto F, Brandon N, Santarelli M (2013) Durability of anode sup-ported solid oxides fuel cells (SOFC) under direct dry-reforming of methane. Chem Eng J 220:254–263

    CAS  Google Scholar 

  5. Kulkarni A, Giddey S, Badwal S, Paul G (2014) Electrochemical performance of direct carbon fuel cells with titanate anodes. Electrochim Acta 121:34–43

    CAS  Google Scholar 

  6. Iwanschitz B, Holzer L, Mai A, Schütze M (2012) Nickel agglomeration in solid oxide fuel cells: the influence of temperature. Solid State Ionics 211:69–73

    CAS  Google Scholar 

  7. Sarantaridis D, Atkinson A (2007) Redox cycling of Ni-based solid oxide fuel cell anodes: a review. Fuel Cells 7:246–258

    CAS  Google Scholar 

  8. Prakash BS, Kumar SS, Aruna S (2014) Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renew Sust Energ Rev 36:149–179

    Google Scholar 

  9. Verbraeken MC, Ramos T, Agersted K, Ma Q, Savaniu CD, Sudireddy BR, Irvine JTS, Holtappels P, Tietz F (2015) Modified strontium titanates: from defect chemistry to SOFC anodes. RSC Adv 5:1168–1180

    CAS  Google Scholar 

  10. Ding H, Tao Z, Liu S, Zhang J (2015) A high-performing sulfur-tolerant and redox-stable layered perovskite anode for direct hydrocarbon solid oxide fuel cells. Sci Rep 5:18129

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Eror N, Balachandran U (1981) Self-compensation in lanthanum-doped strontium titanate. J Solid State Chem 40:85–91

    CAS  Google Scholar 

  12. Yaqub A, Savaniu C, Janjua NK, Irvine JT (2013) Preparation via a solution method of La0.2Sr0.25Ca0.45TiO3 and its characterization for anode supported solid oxide fuel cells. J Mater Chem A 1:14189–14197

    CAS  Google Scholar 

  13. Goodenough JB, Huang YH (2007) Alternative anode materials for solid oxide fuel cells. J Power Sources 173:1–10

    CAS  Google Scholar 

  14. Kim JS, Nair VV, Vohs JM, Gorte RJ (2011) A study of the methane tolerance of LSCM–YSZ composite anodes with Pt, Ni, Pd and ceria catalysts. Scr Mater 65:90–95

    CAS  Google Scholar 

  15. Kim T, Liu G, Boaro M, Lee SI, Vohs JM, Gorte RJ, Al-Madhi O, Dabbousi B (2006) A study of carbonformation and prevention in hydrocarbon-fueled SOFC. J Power Sources 155:231–238

    CAS  Google Scholar 

  16. Ye Y, He T, Li Y, Tang EH, Reitz TL, Jiang SP (2008) Pd-promoted La0. 75Sr0. 25Cr0. 5Mn0. 5O3/YSZ composite anodes for direct utilization of methane in SOFCs. J Electrochem Soc 155:B811–B818

    CAS  Google Scholar 

  17. Guo T, Dong X, Shirolkar MM, Song X, Wang M, Zhang L, Li M, Wang H (2014) Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells. ACS Appl Mater Interfaces 6(18):16131–16139

    CAS  PubMed  Google Scholar 

  18. Chen Y, Zhang Y, Lin Y, Yang Z, Su D, Han M, Chen F (2014) Direct-methane solid oxide fuel cells with hierarchically porous Ni-based anode deposited with nanocatalyst layer. Nano Energy 10:1–9

    CAS  Google Scholar 

  19. Choi S, Yoo S, Kim J, Park S, Jun A, Sengodan S, Kim J, Shin J, Jeong HY, Choi Y et al (2013) Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa 0.5 Sr 0.5 Co 2- x Fe x O 5+δ. Sci Rep 3:2426

    PubMed  PubMed Central  Google Scholar 

  20. Grgicak CM, Giorgi JB (2007) Improved performance of Ni-and Co-YSZ anodes via sulfidation to NiS-and CoS-YSZ. Effects of temperature on electrokinetic parameters. J Phys Chem C 111:15446–15455

    CAS  Google Scholar 

  21. Yentekakis I, Jiang Y, Neophytides S, Bebelis S, Vayenas C (1995) Catalysis, electrocatalysis and electrochemical promotion of the steam reforming of methane over Ni film and Ni-YSZ cermet anodes. Ionics 1:491–498

    CAS  Google Scholar 

  22. Grgicak CM, Pakulska MM, OŠBrien JS, Giorgi JB (2008) Synergistic effects of Ni1-xCox-YSZ and Ni1-xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S. J Power Sources 183:26–33

    CAS  Google Scholar 

  23. Marina OA, Pederson LR, Williams MC, Coffey GW, Meinhardt KD, Nguyen CD, Thomsen EC (2007) Electrode performance in reversible solid oxide fuel cells. J Electrochem Soc 154:B452–B459

    CAS  Google Scholar 

  24. Shahid M, Tiwari P, Basu S (2019) Performance comparison of Ni Ex-soluted and impregnated La-and Y-doped Sr titanates as anode for solid oxide fuel cell. Ionics 25:171–180

    CAS  Google Scholar 

  25. Finklea H, Chen X, Gerdes K, Pakalapati S, Celik I (2013) Analysis of SOFCs using reference electrodes. J Electrochem Soc 160:F1055–F1066

    CAS  Google Scholar 

  26. Winkler J, Hendriksen P, Bonanos N, Mogensen M (1998) Geometric requirements of solid electrolyte cells with a reference electrode. J Electrochem Soc 145:1184–1192

    CAS  Google Scholar 

  27. Keech PG, Trifan DE, Birss VI (2005) Synthesis and performance of sol-gel prepared Ni-YSZ cermet SOFC anodes. J Electrochem Soc 152:A645–A651

    CAS  Google Scholar 

  28. Butler J (1924) Studies in heterogeneous equilibria. Part II The kinetic interpretation of the Nernst theory of electromotive force. Trans Faraday Soc 19:729–733

    Google Scholar 

  29. Butler JAV (1932) The mechanism of overvoltage and its relation to the combination of hydrogen atoms at metal electrodes. Trans Faraday Soc 28:379–382

    CAS  Google Scholar 

  30. Krishnan VV, McIntosh S, Gorte RJ, Vohs JM (2004) Measurement of electrode overpotentials for direct hydrocarbon conversion fuel cells. Solid State Ionics 166:191–197

    CAS  Google Scholar 

  31. Mogensen M, Lindegaard T, Hansen UR, Mogensen G (1994) Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2. J Electrochem Soc 141:2122–2128

    CAS  Google Scholar 

  32. Li W, Srinivasan SG, Salahub D, Heine T (2016) Ni on the CeO2 (110) and (100) surfaces: adsorption vs. substitution effects on the electronic and geometric structures and oxygen vacancies. Phys Chem Chem Phys 18:11139–11149

    CAS  PubMed  Google Scholar 

  33. Liu Z, Grinter DC, Lustemberg PG, Nguyen-Phan TD, Zhou Y, Luo S, Waluyo I, Crumlin EJ, Stacchiola DJ, Zhou J, Carrasco J, Busnengo HF, Ganduglia-Pirovano MV, Senanayake SD, Rodriguez JA (2016) Dry reforming of methane on a highly-active Ni-CeO2 catalyst: effects of metal-support interactions on C- H bond breaking. Angew Chem Int Ed 55(26):7455–7459

    CAS  Google Scholar 

  34. She W, Qi T, Cui M, Yan P, Ng SW, Li W, Li G (2018) High catalytic performance of a CeO2-supported Ni catalyst for hydrogenation of nitroarenes, fabricated via coordination-assisted strategy. ACS Appl Mater Interfaces 10(17):14698–14707

    CAS  PubMed  Google Scholar 

  35. Seo H (2018) Recent scientific progress on developing supported Ni catalysts for dry (CO2) reforming of methane. Catalysts 8:110

    Google Scholar 

  36. Van den Bossche M, McIntosh S (2008) The rate and selectivity of methane oxidation over La0. 75Sr0. 25CrxMn1-xO3-d as a function of lattice oxygen stoichiometry under solid oxide fuel cell anode conditions. J Catal 255:313–323

    Google Scholar 

  37. Sierra Gallego G, Batiot-Dupeyrat C, Mondragón F (2010) Methane partial oxidation by the lattice oxy-gen of the LaNiO3-d perovskite. A pulse study Dyna 77:141–150

    Google Scholar 

  38. Dong WS, Jun KW, Roh HS, Liu ZW, Park SE (2002) Comparative study on partial oxidation of methane over Ni/ZrO2, Ni/CeO2 and Ni/Ce–ZrO2 catalysts. Catal Lett 78:215–222

    CAS  Google Scholar 

  39. Kogler M, Kock EM, Perfler L, Bielz T, Stoger-Pollach M, Hetaba W, Willinger M, Huang X, Schuster M, Klotzer B et al (2014) Methane decomposition and carbon growth on Y2O3, yttria-stabilized zirconia, and ZrO2. Chem Mater 26:1690–1701

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou XD, Pederson LR, Templeton JW, Stevenson JW (2010) Electrochemical performance and stability of the cathode for solid oxide fuel cells I. cross validation of polarization measurements by impedance spectroscopy and current-potential sweep. J Electrochem Soc 157:B220–B227

    CAS  Google Scholar 

  41. Lanfredi S, Darie C, Bellucci FS, Colin CV, Nobre MAL (2014) Phase transitions and interface phenomena in the cryogenic temperature domain of a niobate nanostructured ceramic. Dalton Trans 43(28):10983–10998

    CAS  PubMed  Google Scholar 

  42. Torres da Silva I M, Mogensen M B, & Hjelm J (2012) Investigation of the degradation of LSM-YSZ SOFC cathode by electrochemical impedance spectroscopy. Department of Energy Conversion and Storage, Technical University of Denmark

  43. Hoff B D (2006). A time transient technique for performance characterization and degradation diagnostics in solid oxide fuel cells (Doctoral dissertation, University of British Columbia)

  44. Primdahl S, Mogensen M (1997) Gas conversion impedance: SOFC anodes in H2/H2O atmospheres. ECS Proceedings Volumes 97(18):530–539

    Google Scholar 

  45. Sirenko A, Akimov I, Fox J, Clark A, Li HC, Si W, Xi X (1999) Observation of the first-order Raman scattering in SrTiO3 thin films. Phys Rev Lett 82:4500

    CAS  Google Scholar 

  46. Fuentes S, Muñoz P, Barraza N, Chávez-Ángel E, Torres CS (2015) Structural characterization of slightly Fe-doped SrTiO 3 grown via a sol–gel hydrothermal synthesis. J Sol-Gel Sci Technol 75:593–601

    CAS  Google Scholar 

  47. Tenne D, Gonenli I, Soukiassian A, Schlom D, Nakhmanson S, Rabe K, Xi X (2007) Raman study of oxygen reduced and re-oxidized strontium titanate. Phys Rev B 76:024303

    Google Scholar 

  48. Liu D, Li D, Yang D (2017) Size-dependent magnetic properties of branchlike nickel oxide nanocrystals. AIP Adv 7:015028

    Google Scholar 

  49. Zhou M, Chai H, Jia D, Zhou W (2014) The glucose-assisted synthesis of a graphene nanosheet–NiO composite for high-performance supercapacitors. New J Chem 38:2320–2326

    CAS  Google Scholar 

  50. Zamiri R, Ahangar HA, Kaushal A, Zakaria A, Zamiri G, Tobaldi D, Ferreira J (2015) Dielectrical properties of CeO2 nanoparticles at different temperatures. PLoS One 10:e0122989

    PubMed  PubMed Central  Google Scholar 

  51. Kondo H, Sekino T, Kusunose T, Nakayama T, Yamamoto Y, Niihara K (2003) Phase stability and electrical property of NiO-doped yttria-stabilized zirconia. Mater Lett 57:1624–1628

    CAS  Google Scholar 

  52. Hunter C, Check M, Hager C, Voevodin A (2008) Tribological properties of carbon nanopearls synthesized by nickel-catalyzed chemical vapor deposition. Tribol Lett 30:169–176

    CAS  Google Scholar 

Download references

Funding

The authors would like to thank the Oil and Natural Gas Corporation (ONGC) of India for funding this work. V.R acknowledges the VAJRA fellowship from the Government of India for enabling this collaboration. V.R. acknowledges with gratitude generous support from the Roma B. and Raymond H. Wittcoff Distinguished University Professorship and the McKelvey School of Engineering at Washington University in St. Louis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suddhasatwa Basu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, M., Ramani, V. & Basu, S. Kinetics of methane electrooxidation in pure and composite anodes of La0.3Y0.1Sr0.4TiO3−δ. J Solid State Electrochem 24, 145–156 (2020). https://doi.org/10.1007/s10008-019-04451-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04451-x

Keywords

Navigation