Skip to main content
Log in

Evaluation of a biosensor based on reduced graphene oxide and glucose oxidase enzyme on the monitoring of second-generation ethanol production

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An easily prepared biosensor based on reduced graphene oxide (rGO) and glucose oxidase (GOx) enzyme was developed to monitor the enzymatic hydrolysis process of the second-generation (2G) ethanol process from green coconut biomass. The rGO-GOx biocomposite that modified a glassy carbon (GC) electrode was characterized by morphological, electrochemical and spectrophotometric techniques showing that the GOx enzyme was immobilized on the rGO. The parameters for glucose determination were optimized by square wave voltammetry (SWV). The developed biosensor was applied for the determination of glucose during the enzymatic hydrolysis step, showing that the process can be stopped with 12 h of reaction. Thus, an important achievement of this analysis is the reduced time to get a valuable result for the test, saving time and reducing the cost of the 2G ethanol process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferreira-Leitao V, Gottschalk LMF, Ferrara MA et al (2010) Biomass residues in Brazil: availability and potential uses. Waste Biomass Valorization 1(1):65–76. https://doi.org/10.1007/s12649-010-9008-8

    Article  CAS  Google Scholar 

  2. da Silva AC (2014) Reaproveitamento Da Casca De Coco Verde. Rev Monogr Ambient 13:1–38. https://doi.org/10.5902/2236130815186

    Article  Google Scholar 

  3. Carrijo OA, de Liz RS, Makishima N (2002) Fibra da casca do coco verde como substrato agrícola. Hortic Bras 20:533–535. https://doi.org/10.1590/S0102-05362002000400003

    Article  Google Scholar 

  4. Fu Z, Holtzapple MT (2010) Consolidated bioprocessing of sugarcane bagasse and chicken manure to ammonium carboxylates by a mixed culture of marine microorganisms. Bioresour Technol 101:2825–2836. https://doi.org/10.1016/J.BIORTECH.2009.11.104

    Article  CAS  PubMed  Google Scholar 

  5. Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573. https://doi.org/10.1016/J.PECS.2007.11.001

    Article  CAS  Google Scholar 

  6. Wohlfahrt G, Trivić S, Zeremski J, Pericin D, Leskovac V (2004) The chemical mechanism of action of glucose oxidase from Aspergillus Niger. Mol Cell Biochem 260(1-2):69–83. https://doi.org/10.1023/B:MCBI.0000026056.75937.98

    Article  CAS  PubMed  Google Scholar 

  7. Samphao A, Butmee P, Saejueng P et al (2018) Monitoring of glucose and ethanol during wine fermentation by bienzymatic biosensor. J Electroanal Chem 816:179–188. https://doi.org/10.1016/J.JELECHEM.2018.03.052

    Article  CAS  Google Scholar 

  8. Kohori NA, da Silva MKL, Cesarino I (2018) Evaluation of graphene oxide and reduced graphene oxide in the immobilization of laccase enzyme and its application in the determination of dopamine. J Solid State Electrochem 22(1):141–148. https://doi.org/10.1007/s10008-017-3738-5

    Article  CAS  Google Scholar 

  9. da Silva MKL, Vanzela HC, Defavari LM, Cesarino I (2018) Determination of carbamate pesticide in food using a biosensor based on reduced graphene oxide and acetylcholinesterase enzyme. Sensors Actuators B Chem 277:555–561. https://doi.org/10.1016/j.snb.2018.09.051

    Article  CAS  Google Scholar 

  10. Wang K, Liu Q, Guan Q-M, Wu J, Li HN, Yan JJ (2011) Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron 26(5):2252–2257. https://doi.org/10.1016/J.BIOS.2010.09.043

    Article  CAS  PubMed  Google Scholar 

  11. Unnikrishnan B, Palanisamy S, Chen S-M (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens Bioelectron 39(1):70–75. https://doi.org/10.1016/J.BIOS.2012.06.045

    Article  CAS  PubMed  Google Scholar 

  12. Paulus GLC, Nelson JT, Lee KY, Wang QH, Reuel NF, Grassbaugh BR, Kruss S, Landry MP, Kang JW, Vander Ende E, Zhang J, Mu B, Dasari RR, Opel CF, Wittrup KD, Strano MS (2015) A graphene-based physiometer array for the analysis of single biological cells. Sci Rep 4(1):6865–6811. https://doi.org/10.1038/srep06865

    Article  CAS  Google Scholar 

  13. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14(3):271–279. https://doi.org/10.1038/nmat4170

    Article  CAS  PubMed  Google Scholar 

  14. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  15. Wang QH, Jin Z, Kim KK, Hilmer AJ, Paulus GL, Shih CJ, Ham MH, Sanchez-Yamagishi JD, Watanabe K, Taniguchi T, Kong J, Jarillo-Herrero P, Strano MS (2012) Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat Chem 4(9):724–732. https://doi.org/10.1038/nchem.1421

    Article  CAS  PubMed  Google Scholar 

  16. Bello A, Fabiane M, Dodoo-Arhin D et al (2014) Silver nanoparticles decorated on a three-dimensional graphene scaffold for electrochemical applications. J Phys Chem Solids 75:109–114. https://doi.org/10.1016/J.JPCS.2013.09.006

    Article  CAS  Google Scholar 

  17. Pakapongpan S, Poo-arporn RP (2017) Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Mater Sci Eng C 76:398–405. https://doi.org/10.1016/j.msec.2017.03.031

    Article  CAS  Google Scholar 

  18. Donini CA, da Silva MKL, Simões RP, Cesarino I (2018) Reduced graphene oxide modified with silver nanoparticles for the electrochemical detection of estriol. J Electroanal Chem 809:67–73. https://doi.org/10.1016/j.jelechem.2017.12.054

    Article  CAS  Google Scholar 

  19. Da Silva MKL, Plana Simões R, Cesarino I (2018) Evaluation of reduced Graphene oxide modified with antimony and copper nanoparticles for levofloxacin oxidation. Electroanalysis. https://doi.org/10.1002/elan.201800265

  20. Gong Y, Li D, Fu Q, Pan C (2015) Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog Nat Sci 25:379–385. https://doi.org/10.1016/j.pnsc.2015.10.004

    Article  CAS  Google Scholar 

  21. Casero E, Parra-Alfambra AM, Petit-Domínguez MD, Pariente F, Lorenzo E, Alonso C (2012) Differentiation between graphene oxide and reduced graphene by electrochemical impedance spectroscopy (EIS). Electrochemical Commun 20:63–66. https://doi.org/10.1016/j.elecom.2012.04.002

    Article  CAS  Google Scholar 

  22. Wang D, Liang Y, Su Y, Shang Q, Zhang C (2019) Sensitivity enhancement of cloth-based closed bipolar electrochemiluminescence glucose sensor via electrode decoration with chitosan/multi-walled carbon nanotubes/graphene quantum dots-gold nanoparticles. Biosens Bioelectron 130:55–64. https://doi.org/10.1016/j.bios.2019.01.027

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

FAPESP (grants 2017/03925-6 and 2017/24274-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Cesarino.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donini, C.A., Silva, M.K.L., Bronzato, G.R. et al. Evaluation of a biosensor based on reduced graphene oxide and glucose oxidase enzyme on the monitoring of second-generation ethanol production. J Solid State Electrochem 24, 2011–2018 (2020). https://doi.org/10.1007/s10008-019-04471-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04471-7

Keywords

Navigation