Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Both selection and plasticity drive niche differentiation in experimental grasslands

Abstract

The way species avoid each other in a community by using resources differently across space and time is one of the main drivers of species coexistence in nature1,2. This mechanism, known as niche differentiation, has been widely examined theoretically but still lacks thorough experimental validation in plants. To shape niche differences over time, species within communities can reduce the overlap between their niches or find unexploited environmental space3. Selection and phenotypic plasticity have been advanced as two candidate processes driving niche differentiation4,5, but their respective role remains to be quantified6. Here, we tracked changes in plant height, as a candidate trait for light capture7, in 5-year multispecies sown grasslands. We found increasing among-species height differences over time. Phenotypic plasticity promotes this change, which explains the rapid setting of differentiation in our system. Through the inspection of changes in genetic structure, we also highlighted the contribution of selection. Altogether, we experimentally demonstrated the occurrence of species niche differentiation within artificial grassland communities over a short time scale through the joined action of both plasticity and selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Niche differentiation.
Fig. 2: Phenotypic and genotypic dynamics over the 5 years of experimentation.
Fig. 3: Species abundance.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at https://data.inra.fr/privateurl.xhtml?token=8bcba8cf-56b6-4210-89d5-9beca09801b7.

References

  1. Levine, J. M. & HilleRisLambers, J. The importance of niches for the maintenance of species diversity. Nature 461, 254–257 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  3. Von Felten, S. et al. Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology 90, 1389–1399 (2009).

    Article  PubMed  Google Scholar 

  4. Roscher, C., Schumacher, J., Schmid, B. & Schulze, E. D. Contrasting effects of intraspecific trait variation on trait-based niches and performance of legumes in plant mixtures. PLoS ONE 10, e0119786 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Vellend, M. The consequences of genetic diversity in competitive communities. Ecology 87, 304–311 (2006).

    Article  PubMed  Google Scholar 

  6. Niklaus, P. A., Baruffol, M., He, J. S., Ma, K. P. & Schmid, B. Can niche plasticity promote biodiversity–productivity relationships through increased complementarity? Ecology 98, 1104–1116 (2017).

    Article  PubMed  Google Scholar 

  7. Westoby, M. A leaf–height–seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).

    Article  CAS  Google Scholar 

  8. Turnbull, L. A., Levine, J. M., Loreau, M. & Hector, A. Coexistence, niches and biodiversity effects on ecosystem functioning. Ecol. Lett. 16, 116–127 (2013).

    Article  PubMed  Google Scholar 

  9. Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. System. 45, 471–493 (2014).

    Article  Google Scholar 

  11. Navas, M. L. & Violle, C. Plant traits related to competition: how do they shape the functional diversity of communities? Commun. Ecol. 10, 131–137 (2009).

    Article  Google Scholar 

  12. D’Andrea, R. & Ostling, A. Challenges in linking trait patterns to niche differentiation. Oikos 125, 1369–1385 (2016).

    Article  Google Scholar 

  13. Roughgarden, J. Resource partitioning among competing species—a coevolutionary approach. Theor. Popul. Biol. 9, 388–424 (1976).

    Article  CAS  PubMed  Google Scholar 

  14. Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).

    Article  PubMed  Google Scholar 

  15. Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838 (2016).

    Article  PubMed  Google Scholar 

  16. Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).

    Article  CAS  PubMed  Google Scholar 

  17. Scheele, B. C., Foster, C. N., Banks, S. C. & Lindenmayer, D. B. Niche contractions in declining species: mechanisms and consequences. Trends Ecol. Evol. 32, 346–355 (2017).

    Article  PubMed  Google Scholar 

  18. Berg, M. P. & Ellers, J. Trait plasticity in species interactions: a driving force of community dynamics. Evol. Ecol. 24, 617–629 (2010).

    Article  Google Scholar 

  19. Grenier, S., Barre, P. & Litrico, I. Phenotypic plasticity and selection: nonexclusive mechanisms of adaptation. Scientifica 2016, 7021701 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Van Moorsel, S. J. et al. Community evolution increases plant productivity at low diversity. Ecol. Lett. 21, 128–137 (2018).

    Article  PubMed  Google Scholar 

  22. Meilhac, J., Durand, J. L., Beguier, V. & Litrico, I. Increasing the benefits of species diversity in multispecies temporary grasslands by increasing within-species diversity. Ann. Bot. 123, 891–900 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gautier, H., Varlet-Grancher, C. & Baudry, N. Comparison of horizontal spread of white clover (Trifolium repens L.) grown under two artificial light sources differing in their content of blue light. Ann. Bot. 82, 41–48 (1998).

    Article  Google Scholar 

  24. Roscher, C., Kutsch, W. L. & Schulze, E. D. Light and nitrogen competition limit Lolium perenne in experimental grasslands of increasing plant diversity. Plant Biol. 13, 134–144 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    Article  PubMed  Google Scholar 

  26. Violle, C. & Jiang, L. Towards a trait-based quantification of species niche. J. Plant Ecol. 2, 87–93 (2009).

    Article  Google Scholar 

  27. Gommers, C. M. M., Visser, E. J. W., St Onge, K. R., Voesenek, L. & Pierik, R. Shade tolerance: when growing tall is not an option. Trends Plant Sci. 18, 65–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Pontes, L. D., Maire, V., Louault, F., Soussana, J. F. & Carrere, P. Impacts of species interactions on grass community productivity under contrasting management regimes. Oecologia 168, 761–771 (2012).

    Article  Google Scholar 

  29. Schippers, P. & Kropff, M. J. Competition for light and nitrogen among grassland species: a simulation analysis. Funct. Ecol. 15, 155–164 (2001).

    Article  Google Scholar 

  30. Weiner, J. & Thomas, S. C. Size variability and competition in plant monocultures. Oikos 47, 211–222 (1986).

    Article  Google Scholar 

  31. Falster, D. S. & Westoby, M. Plant height and evolutionary games. Trends Ecol. Evol. 18, 337–343 (2003).

    Article  Google Scholar 

  32. Bittebiere, A. K., Saiz, H. & Mony, C. New insights from multidimensional trait space responses to competition in two clonal plant species. Funct. Ecol. 33, 297–307 (2019).

    Article  Google Scholar 

  33. Maire, V. et al. Disentangling coordination among functional traits using an individual-centred model: impact on plant performance at intra- and inter-specific levels. PLoS ONE 8, e77372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nelson, C. J. in Grassland Ecophysiology and Grazing Ecology 101–126 (Univ. Press Cambridge, 2000).

  35. Maire, V. et al. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytol. 196, 497–509 (2012).

    Article  PubMed  Google Scholar 

  36. Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).

    Article  PubMed  Google Scholar 

  37. Marriott, C. A., Bolton, G. R. & Duff, E. I. Factors affecting the stolon growth of white clover in ryegrass/clover patches. Grass Forage Sci. 52, 147–155 (1997).

    Article  Google Scholar 

  38. Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).

    Article  PubMed  Google Scholar 

  39. McPeek, M. A. The ecological dynamics of natural selection: traits and the coevolution of community structure. Am. Nat. 189, E91–E117 (2017).

    Article  PubMed  Google Scholar 

  40. Chacón-Labella, J., García Palacios, P., Matesanz, S., Schöb, C. & Milla, R. Plant domestication disrupts biodiversity effects across major crop types. Ecol. Lett. 22, 1472–1482 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vos, P. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Piry, S. et al. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Rannala, B. & Mountain, J. L. Detecting immigration by using multilocus genotypes. Proc. Natl Acad. Sci. USA 94, 9197–9201 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank V. Beguier, head of research at the Jouffray Drillaud Company (Saint Sauvant, France), and his technical team for installation of the experiment, the URP3F technical team, and particularly D. Dénoue and B. Bonneau who provided important experimental assistance. The Agence Nationale de la Recherche in France (PRAISE; ANR-13-ADAP-0015) funded this work. The PhD salary of J.M. was supported by the Poitou-Charentes region and INRA (BAP division and MP EcoServ). V.M. and L.D. were supported by the Natural Sciences and Engineering Research Council of Canada (NSERC-Discovery-2016-05716).

Author information

Authors and Affiliations

Authors

Contributions

I.L. initiated the research question, obtained the funds and led the working group. I.L., J.M. and S.F. collected the data. J.M. and S.F. organized the dataset. All authors coordinated the analyses. J.M., I.L., V.M. and L.D. drafted the manuscript. All authors contributed to the final manuscript.

Corresponding author

Correspondence to Isabelle Litrico.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Peer review information Nature Plants thanks Bernhard Schmid and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Supplementary Notes.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–6.

Source data

Source Data Fig. 1

Height data source.

Source Data Fig. 2

Data source of Height and cultivar frequencies.

Source Data Fig. 3

Biomass data source.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meilhac, J., Deschamps, L., Maire, V. et al. Both selection and plasticity drive niche differentiation in experimental grasslands. Nat. Plants 6, 28–33 (2020). https://doi.org/10.1038/s41477-019-0569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0569-7

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene