Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the human lipid exporter ABCB4 in a lipid environment

Abstract

ABCB4 is an ATP-binding cassette transporter that extrudes phosphatidylcholine into the bile canaliculi of the liver. Its dysfunction or inhibition by drugs can cause severe, chronic liver disease or drug-induced liver injury. We determined the cryo-EM structure of nanodisc-reconstituted human ABCB4 trapped in an ATP-bound state at a resolution of 3.2 Å. The nucleotide binding domains form a closed conformation containing two bound ATP molecules, but only one of the ATPase sites contains bound Mg2+. The transmembrane domains adopt a collapsed conformation at the level of the lipid bilayer, but we observed a large, hydrophilic and fully occluded cavity at the level of the cytoplasmic membrane boundary, with no ligand bound. This indicates a state following substrate release but prior to ATP hydrolysis. Our results rationalize disease-causing mutations in human ABCB4 and suggest an ‘alternating access’ mechanism of lipid extrusion, distinct from the ‘credit card swipe’ model of other lipid transporters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional characterization of ABCB4.
Fig. 2: Structure of human ABCB4.
Fig. 3: Nucleotide binding to ABCB4.
Fig. 4: Functionally impairing mutants and chimeras of ABCB4.
Fig. 5: The structure of ABCB4 in the context of the predicted transport cycle, with states numbered.

Similar content being viewed by others

Data availability

Source data for Figs. 1b,d,e and 4d as well as Extended Data Fig. 2a are available with the online version of this paper. Coordinates for the deposited model have been deposited at the Protein Data Bank under ID 6S7P. The associated cryo-EM map has been deposited at the Electron Microscopy Data Bank under ID EMD-10111.

References

  1. Smit, J. J. et al. Homozygous disruption of the murine MDR2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75, 451–462 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Morita, S. Y. & Terada, T. Molecular mechanisms for biliary phospholipid and drug efflux mediated by ABCB4 and bile salts. Biomed. Res. Int. 2014, 954781 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Boyer, J. L. Bile formation and secretion. Compr. Physiol. 3, 1035–1078 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteomics 13, 397–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Oude Elferink, R. P. & Paulusma, C. C. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch. 453, 601–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Lucena, J. F. et al. A multidrug resistance 3 gene mutation causing cholelithiasis, cholestasis of pregnancy and adulthood biliary cirrhosis. Gastroenterology 124, 1037–1042 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Jacquemin, E. et al. The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. Gastroenterology 120, 1448–1458 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Gautherot, J. et al. Phosphorylation of ABCB4 impacts its function: insights from disease-causing mutations. Hepatology 60, 610–621 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Andress, E. J. et al. Molecular mechanistic explanation for the spectrum of cholestatic disease caused by the S320F variant of ABCB4. Hepatology 59, 1921–1931 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Morita, S. Y. et al. Bile salt-dependent efflux of cellular phospholipids mediated by ATP binding cassette protein B4. Hepatology 46, 188–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Delaunay, J. L. et al. A functional classification of ABCB4 variations causing progressive familial intrahepatic cholestasis type 3. Hepatology 63, 1620–1631 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Delaunay, J. L. et al. Functional defect of variants in the adenosine triphosphate-binding sites of ABCB4 and their rescue by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770). Hepatology 65, 560–570 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Andress, E. J., Nicolaou, M., McGeoghan, F. & Linton, K. J. ABCB4 missense mutations D243A, K435T, G535D, I490T, R545C and S978P significantly impair the lipid floppase and likely predispose to secondary pathologies in the human population. Cell. Mol. Life Sci. 74, 2513–2524 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park, H. J. et al. Functional characterization of ABCB4 mutations found in progressive familial intrahepatic cholestasis type 3. Sci. Rep. 6, 26872 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Padda, M. S., Sanchez, M., Akhtar, A. J. & Boyer, J. L. Drug-induced cholestasis. Hepatology 53, 1377–1387 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Aleo, M. D., Shah, F., He, K., Bonin, P. D. & Rodrigues, A. D. Evaluating the role of multidrug resistance protein 3 (MDR3) inhibition in predicting drug-induced liver injury using 125 pharmaceuticals. Chem. Res. Toxicol. 30, 1219–1229 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Mahdi, Z. M., Synal-Hermanns, U., Yoker, A., Locher, K. P. & Stieger, B. Role of multidrug resistance protein 3 in antifungal-induced cholestasis. Mol. Pharmacol. 90, 23–34 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Yoshikado, T. et al. Itraconazole-induced cholestasis: involvement of the inhibition of bile canalicular phospholipid translocator MDR3/ABCB4. Mol. Pharmacol. 79, 241–250 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Tougeron, D., Fotsing, G., Barbu, V. & Beauchant, M. ABCB4/MDR3 gene mutations and cholangiocarcinomas. J. Hepatol. 57, 467–468 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Mhatre, S. et al. Common genetic variation and risk of gallbladder cancer in India: a case–control genome-wide association study. Lancet Oncol. 18, 535–544 (2017).

    Article  PubMed  Google Scholar 

  21. Kiehl, S. et al. ABCB4 is frequently epigenetically silenced in human cancers and inhibits tumor growth. Sci. Rep. 4, 6899 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Locher, K. P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23, 487–493 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Ruetz, S. & Gros, P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell 77, 1071–1081 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, A. J. et al. The human MDR3 P-glycoprotein promotes translocation of phosphatidylcholine through the plasma membrane of fibroblasts from transgenic mice. FEBS Lett. 354, 263–266 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Crawford, A. R. et al. Hepatic secretion of phospholipid vesicles in the mouse critically depends on mdr2 or MDR3 P-glycoprotein expression. Visualization by electron microscopy. J. Clin. Invest. 100, 2562–2567 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mi, W. et al. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549, 233–237 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perez, C. et al. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524, 433–438 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Qian, H. et al. Structure of the human lipid exporter ABCA1. Cell 169, 1228–1239.e10 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Van der Bliek, A. M. et al. The human mdr3 gene encodes a novel P-glycoprotein homologue and gives rise to alternatively spliced mRNAs in liver. EMBO J. 6, 3325–3331 (1987).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Smith, A. J. et al. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J. Biol. Chem. 275, 23530–23539 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Morita, S. Y. et al. Bile salt-stimulated phospholipid efflux mediated by ABCB4 localized in nonraft membranes. J. Lipid Res. 54, 1221–1230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wen, C. et al. Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicinresistant breast cancer cells. Mol. Med. Rep. 19, 5162–5168 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kino, K., Taguchi, Y., Yamada, K., Komano, T. & Ueda, K. Aureobasidin A, an antifungal cyclic depsipeptide antibiotic, is a substrate for both human MDR1 and MDR2/P-glycoproteins. FEBS Lett. 399, 29–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Schinkel, A. H., Roelofs, E. M. & Borst, P. Characterization of the human MDR3 P-glycoprotein and its recognition by P-glycoprotein-specific monoclonal antibodies. Cancer Res. 51, 2628–2635 (1991).

    CAS  PubMed  Google Scholar 

  35. van Helvoort, A. et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87, 507–517 (1996).

    Article  PubMed  Google Scholar 

  36. Prescher, M., Kroll, T. & Schmitt, L. ABCB4/MDR3 in health and disease—at the crossroads of biochemistry and medicine. Biol. Chem. 400, 1245–1259 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Aller, S. G. et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718–1722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alam, A. et al. Structure of a zosuquidar and UIC2-bound human-mouse chimeric ABCB1. Proc. Natl Acad. Sci. USA 115, E1973–E1982 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alam, A., Kowal, J., Broude, E., Roninson, I. & Locher, K. P. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 363, 753–756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, Y. & Chen, J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science 359, 915–919 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Ishigami, M. et al. ATPase activity of nucleotide binding domains of human MDR3 in the context of MDR1. Biochim. Biophys. Acta 1831, 683–690 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Groen, A. et al. Complementary functions of the flippase ATP8B1 and the floppase ABCB4 in maintaining canalicular membrane integrity. Gastroenterology 141, 1927–1937 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Ellinger, P., Kluth, M., Stindt, J., Smits, S. H. & Schmitt, L. Detergent screening and purification of the human liver ABC transporters BSEP (ABCB11) and MDR3 (ABCB4) expressed in the yeast Pichia pastoris. PLoS One 8, e60620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kluth, M. et al. A mutation within the extended X loop abolished substrate-induced ATPase activity of the human liver ATP-binding cassette (ABC) transporter MDR3. J. Biol. Chem. 290, 4896–4907 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Higgins, C. F. & Linton, K. J. The ATP switch model for ABC transporters. Nat. Struct. Mol. Biol. 11, 918–926 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Tombline, G., Bartholomew, L. A., Urbatsch, I. L. & Senior, A. E. Combined mutation of catalytic glutamate residues in the two nucleotide binding domains of P-glycoprotein generates a conformation that binds ATP and ADP tightly. J. Biol. Chem. 279, 31212–31220 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Urbatsch, I. L., Sankaran, B., Weber, J. & Senior, A. E. P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. J. Biol. Chem. 270, 19383–19390 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Dawson, R. J. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Choudhury, H. G. et al. Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc. Natl Acad. Sci. USA 111, 9145–9150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zaitseva, J. et al. A molecular understanding of the catalytic cycle of the nucleotide-binding domain of the ABC transporter HlyB. Biochem. Soc. Trans. 33, 990–995 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Esser, L. et al. Structures of the multidrug transporter P-glycoprotein reveal asymmetric ATP binding and the mechanism of polyspecificity. J. Biol. Chem. 292, 446–461 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Hrycyna, C. A. et al. Mechanism of action of human P-glycoprotein ATPase activity. Photochemical cleavage during a catalytic transition state using orthovanadate reveals cross-talk between the two ATP sites. J. Biol. Chem. 273, 16631–16634 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Manolaridis, I. et al. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 563, 426–430 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu, D. et al. Cryo-EM structure of human lysosomal cobalamin exporter ABCD4. Cell Res. 29, 1039–1041 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang, Z., Liu, F. & Chen, J. Conformational changes of CFTR upon phosphorylation and ATP binding. Cell 170, 483–491 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Albe, K. R., Butler, M. H. & Wright, B. E. Cellular concentrations of enzymes and their substrates. J. Theor. Biol. 143, 163–195 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Locher, K. P., Lee, A. T. & Rees, D. C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Andersen, J. P. et al. P4-ATPases as phospholipid flippases-structure, function and enigmas. Front. Physiol. 7, 275 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brunner, J. D., Schenck, S. & Dutzler, R. Structural basis for phospholipid scrambling in the TMEM16 family. Curr. Opin. Struct. Biol. 39, 61–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Falzone, M. E. et al. Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase. eLife 8, e43229 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lee, B. C. et al. Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase. Nat. Commun. 9, 3251 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Malvezzi, M. et al. Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases. Proc. Natl Acad. Sci. USA 115, E7033–E7042 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chifflet, S., Torriglia, A., Chiesa, R. & Tolosa, S. A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPases. Anal. Biochem. 168, 1–4 (1988).

    Article  CAS  PubMed  Google Scholar 

  66. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ho, B. K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dimitropoulos, D., Ionides, J. & Henrick, K. Using MSDchem to search the PDB ligand dictionary. Curr. Protoc. Bioinformatics 15, 14.3.1–14.3.21 (2006).

    Google Scholar 

  77. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Wendum, D. et al. Aspects of liver pathology in adult patients with MDR3/ABCB4 gene mutations. Virchows Arch. 460, 291–298 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Poupon, R. et al. Genotype–phenotype relationships in the low‐phospholipid‐associated cholelithiasis syndrome: a study of 156 consecutive patients. Hepatology 58, 1105–1110 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Pauli-Magnus, C. et al. BSEP and MDR3 haplotype structure in healthy caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 39, 779–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Degiorgio, D. et al. Molecular characterization and structural implications of 25 new ABCB4 mutations in progressive familial intrahepatic cholestasis type 3 (PFIC3). Eur. J. Hum. Genet. 15, 1230–1238 (2007).

    Article  CAS  Google Scholar 

  82. Rosmorduc, O., Poupon, R. & Hermelin, B. MDR3 gene defect in adults with symptomatic intrahepatic and gallbladder cholesterol cholelithiasis. Gastroenterology 120, 1459–1467 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Keitel, V. et al. Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 41, 1160–1172 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Davit-Spraul, A., Gonzales, E., Baussan, C. & Jacquemin, E. The spectrum of liver diseases related to ABCB4 gene mutations: pathophysiology and clinical aspects. Semin. Liver Dis. 30, 134–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Floreani, A. et al. Hepatobiliary phospholipid transporter ABCB4, MDR3 gene variants in a large cohort of Italian women with intrahepatic cholestasis of pregnancy. Dig. Liver Dis. 40, 366–370 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Swiss National Science Foundation (grant nos. 310030B_166672 and 310030_189111 to K.P.L.) and by The Danish Council for Independent Research (grant no. DFF-4181-00021 to J.A.O.). Cryo-EM data were collected at the electron microscopy facility at ETH Zürich (ScopeM) and the authors thank the ScopeM staff for technical support.

Author information

Authors and Affiliations

Authors

Contributions

J.A.O. performed experiments and prepared samples. J.A.O., A.A. and J.K. collected the cryo-EM data. J.A.O., A.A. and J.K. processed the cryo-EM data. J.A.O. and K.P.L. built and validated the model of nucleotide-bound ABCB4. J.A.O. and K.P.L. designed the experiments. J.A.O., B.S. and K.P.L. conceived the project. J.A.O. and K.P.L. wrote the manuscript, with all authors contributing to revisions.

Corresponding author

Correspondence to Kaspar P. Locher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Katarzyna Marcinkiewicz was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 SEC and FSEC profiles of ABCB4.

a,b, FSEC profiles of eYFP-labeled protein extracted by DDM:CHS from pellets of WT ABCB4 expressing Flp-In T-Rex 293 cells collected after harvesting of media for extrusion experiments. Black lines indicates signal from cells with expression induced by addition of tetracycline, red lines indicates signal from uninduced cells. Samples were loaded on a TSKgel G4000SWXL column at 0.4 ml −1min. a, Signals from cells expressing wt-ABCB4). b, Signals from cells expressing ABCB4[EQ]. c-f, SEC profiles of purified ABCB4 reconstituted into LPL:CHS nanodiscs and run on a a TSKgel G3000SWXL column at 0.4 ml −1min. c, ABCB4[EQ] d, Reinjection of the peak fraction from (c) at around 18 min, as also shown in Fig. 1c. e, wt-ABCB4 with reinjected peak fraction shown in (f), as also shown in Fig. 1c.

Extended Data Fig. 2 Cryo-EM data processing of vanadate-trapped wt-ABCB4.

a, ATPase activity of vanadate-trapped wt-ABCB4 (black squares and curve) shown relative to the activity without vanadate (dashed blue line, curve from Fig. 1d). Data points indicate means of three independent measurements, error bars represent S.E.M. b, Representative motion-corrected micrograph of ABCB4 at a nominal magnification of 165kx and a defocus of 2.7 µm. c, Representative 2D classes from cryoSPARC. d, cryoSPARC processing workflow. Data for graph in panel a are available as.

Source data

Extended Data Fig. 3 Cryo-EM structure determination of nucleotide-bound ABCB4.

a, Representative motion-corrected micrograph of ABCB4 at nominal magnification of 165 kx and a defocus of 2.2 µm. Representative 2D classes from RELION are shown to the left. b, RELION processing workflow. c, Local resolution calculated with ResMap in RELION and presented on the sharpened EM map, color coded according to the scale bar next to the density. d, The 3.2 Å map used for model building (cyan) is displayed inside the unsharpened map contoured at lower level (grey). e, Fourier shell correlation curves from RELION. f, Distribution of orientations of particles going into the final class.

Extended Data Fig. 4 Cryo-EM map and model.

The model of nucleotide-bound ABCB4 built according to density. Contour level is set at σ = 5 and density is carved at a distance of 2 Å. a, Density contours from b-factor sharpened map is shown for all six helix pairs as well as the NBDs. b, Density contours shown around central slices of the NBDs, for the same views as shown in (a). Nucleotides are shown in red, Magnesium in yellow.

Extended Data Fig. 5 Stereo representations of disease causing mutations mapped onto the closed conformation of ABCB4.

Stereo representations of disease causing mutations mapped onto the closed conformation of ABCB4. a, Mutations affecting function. b, For clarity, panel (a) of main Fig. 4 is shown with residue identities indicated. c, Mutations affecting expression or trafficking. d, Panel (b) of main Fig. 4 is shown with residue identities labelled.

Extended Data Fig. 6 ABCB4 and ABCB1 chimeras reveal important residues.

a, The different levels of protein extracted with DDM:CHS from pellets of experiments in Fig. 4d are indicated by luminescence units relative to wt-ABCB4. Main peak heights (peak around 20 min) were used to normalize results of the extrusion assays. b, The three positions mutated in the 3 M construct (V985M, H989Q and A990V) are shown in a model of the ATP-Mg2+ bound ABCB4 in stick representation, and residues within 4 Å are shown in line representation. c, Residues V985, H989 and A990 and nearby residues on TMH12, from the model of ABCB4 in the closed conformation, are shown with associated density contoured at a level of σ = 6.5 and carved at a distance of 2 Å from residues. d, Residue positions corresponding to those in (a) are shown on the previously published model of human-mouse chimeric ABCB1 bound to the inhibitor zosuquidar44, used for homology modelling, with density from the associated map contoured at a level of σ = 6.5 and carved at a distance of 2 Å from residues.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Table 1.

Reporting Summary

Source data

Source Data Fig. 1

Raw data for Figs. 1b, 1d and 1e.

Source Data Fig. 4

Raw data for Fig. 4d.

Source Data Extended Data Fig. 2

Raw data for Extended Data Fig. 2a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsen, J.A., Alam, A., Kowal, J. et al. Structure of the human lipid exporter ABCB4 in a lipid environment. Nat Struct Mol Biol 27, 62–70 (2020). https://doi.org/10.1038/s41594-019-0354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0354-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing