Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

TRANSCRIPTIONAL REGULATION

Gene regulatory networks STARR-ing B cells

A genome-wide screening of functionally active enhancers, combined with analyses of chromatin features, transcription factor binding and gene expression, reveals general principles of gene regulatory networks in activated B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-throughput analyses of regulatory features define general characteristics of gene regulatory networks in LPS-activated B cells.

References

  1. Chaudhri, V. K., Dienger-Stambaugh, K., Wu, Z., Shrestha, M. & Singh, H. Nat. Immunol. https://doi.org/10.1038/s41590-019-0565-0 (2020).

    Article  Google Scholar 

  2. Banerji, J., Olson, L. & Schaffner, W. Cell 33, 729–740 (1983).

    Article  CAS  Google Scholar 

  3. Gillies, S. D., Morrison, S. L., Oi, V. T. & Tonegawa, S. Cell 33, 717–728 (1983).

    Article  CAS  Google Scholar 

  4. Pettersson, S., Cook, G. P., Brüggemann, M., Williams, G. T. & Neuberger, M. S. Nature 344, 165–168 (1990).

    Article  CAS  Google Scholar 

  5. Dunham, I. et al. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  6. Yoshida, H. et al. Cell 176, 897–912.e20 (2019).

    Article  CAS  Google Scholar 

  7. Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. & Lieb, J. D. Genome Res. 17, 877–885 (2007).

    Article  CAS  Google Scholar 

  8. Song, L. & Crawford, G. E. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5384 (2010).

    Article  Google Scholar 

  9. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  Google Scholar 

  10. Sanjana, N. E. et al. F. Science 353, 1545–1549 (2016).

    Article  CAS  Google Scholar 

  11. Murtha, M. et al. Nat. Methods 11, 559–565 (2014).

    Article  CAS  Google Scholar 

  12. Arnold, C. D. et al. Science 339, 1074–1077 (2013).

    Article  CAS  Google Scholar 

  13. Lieberman-Aiden, E. et al. Science 326, 289–293 (2009).

    Article  CAS  Google Scholar 

  14. Sabari, B. R. et al. Science 361, eaar3958 (2018).

    Article  Google Scholar 

  15. Cho, W. K. et al. Science 361, 412–415 (2018).

    Article  CAS  Google Scholar 

  16. Boija, A. et al. Cell 175, 1842–1855.e16 (2018).

    Article  CAS  Google Scholar 

  17. Whyte, W. A. et al. Cell 153, 307–319 (2013).

    Article  CAS  Google Scholar 

  18. Shrinivas, K. et al. Mol. Cell 75, 549–561.e7 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexia Martínez de Paz or Steven Zvi Josefowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez de Paz, A., Josefowicz, S.Z. Gene regulatory networks STARR-ing B cells. Nat Immunol 21, 110–112 (2020). https://doi.org/10.1038/s41590-019-0566-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-019-0566-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing