Skip to main content
Log in

Optical surface second harmonic generation from plasmonic graphene-coated nanoshells: influence of shape, size, dielectric core and embedding medium

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We study optical surface second-harmonic generation (SHG) from the plasmonic nanoshells because they can improve and enhance nonlinear optical effects. We also investigate the SHG from the surface of spherical and cylindrical core-shell nanoparticles coated with a strong nonlinear material such as graphene due to its attractive plasmonic behaviour and unique properties of the surface plasmons in graphene. We demonstrate theoretically a giant and tunable second-order harmonic radiation which enhanced through the excitation of the surface plasmon resonance, can be observed at the surface of both spherical and cylindrical nanoshells because of symmetry-breaking at interface, which makes SHG as a valuable and powerful technique for applications in sensing and surface spectroscopy. We present the surface SHG strongly depends on the particle shape and size, the dielectric of embedding medium and core, the type of metal and graphene as a coating nonlinear material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Kauranen, A.V. Zayats, Nat. Photonics 6, 737 (2012)

    ADS  Google Scholar 

  2. P. Ginzburg, A. Krasavin, Y. Sonnefraud, A. Murphy, R.J. Pollard, S.A. Maier, A.V. Zayats, Phys. Rev. B 86, 085422 (2012)

    ADS  Google Scholar 

  3. T. F. Heinz, Nonlinear Surface Electromagnetic Phenomena, H-E. Ponath and G. I. Stegeman, eds. (Elsevier, 1991)

  4. J.I. Dadap, J. Shan, K.B. Eisenthal, T.F. Heinz, Phys. Rev. Lett. 83, 4045 (1999)

    ADS  Google Scholar 

  5. J. Nappa, I. Russier-Antoine, E. Benichou, Ch. Jonin, P.F. Brevet, J. Chem. Phys 125, 184712 (2006)

    ADS  Google Scholar 

  6. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, 2008)

  7. M. Galanty, O. Shavit, A. Weissman, H. Aharon, D. Gachet, E. Segal, A. Salomon, Light: Science & Applications 7, 49 (2018)

    ADS  Google Scholar 

  8. D. Timbrell, J.W. You, Y.S. Kivshar, N.C. Panoiu, Sci. Rep. 8, 1–9 (2018)

    Google Scholar 

  9. D. Javurek and J. pe\(\check{r}\)ina Jr, Sci. Rep. 9, 4679 (2019)

  10. J.E. Sipe, V.C.Y. So, M. Fukui, G.I. Stegeman, Phys. Rev. B 21, 4389 (1980)

    ADS  Google Scholar 

  11. J.-P. Abid, J. Nappa, H.H. Girault, P.-F. Brevet, J. Chem. Phys. 121, 12577 (2004)

    ADS  Google Scholar 

  12. C. Forestiere, A. Capretti, G. Miano, J. Opt. Soc. Am. B 30, 2355–2364 (2013)

    ADS  Google Scholar 

  13. Y.R. Shen, Ann. Rev. Mater. Sci. 16, 69 (1986)

    ADS  Google Scholar 

  14. Y.R. Shen, Nature 337, 519 (1989)

    ADS  Google Scholar 

  15. P.F. Brevet, J. Chem. Soc., Faraday Trans. 92, 4547 (1996)

    Google Scholar 

  16. J.F. McGilp, J. Phys. D: Appl. Phys. 29, 1812 (1996)

    ADS  Google Scholar 

  17. J. Shan, J.I. Dadap, I. Stiopkin, G.A. Reider, T.F. Heinz, Phys. Rev. A 73, 023819 (2006)

    ADS  Google Scholar 

  18. J. Zhu, Nanotechnology 18, 225702 (2007)

    ADS  Google Scholar 

  19. S.M. Anderson, B.S. Mendoza, Phys. Rev. B 94, 115314 (2016)

    ADS  Google Scholar 

  20. N.M. Jassim, Adv. Res. 7, 1–17 (2016)

    Google Scholar 

  21. R. J. Tran, K. L. Sly, J. C. Conboy, Annu. Rev. Anal. Chem. 10, 11.1-11.18 (2017)

  22. K.D. Sattler, Handbook of Nanophysics: Nanoelectronics and Nanophotonics (CRC Press, Taylor & Francis, Boca Raton FL, 2011)

    Google Scholar 

  23. C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K.D. Dorkenoo, A. Fort, Appl. Phys. Lett. 90, 181105 (2007)

    ADS  Google Scholar 

  24. T.V. Shahbazyan, M.I. Stockman, Plasmonics: Theory and Applications (Springer, Dordrecht, 2013)

    Google Scholar 

  25. B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, H. Giessen, Nano. Lett. 15, 3917 (2015)

    ADS  Google Scholar 

  26. A. Capretti, E.F. Pecora, C. Forestiere, L.D. Negro, G. Miano, Phys. Rev. B 89, 125414 (2014)

    ADS  Google Scholar 

  27. L. ZhiBo, Z. XiaoLiang, Y. XiaoQing, C. YongSheng, T. JianGuo, Chin. Sci. Bull. 57, 2971 (2012)

    Google Scholar 

  28. Q. Bao, H. Y. Hoh, Y. Zhang (editors), Graphene Photonics, Optoelectronics, and Plasmonics (Pan Stanford Publishing Pte. Ltd, 2017)

  29. D.A. Smirnova, I.V. Shadrivov, A.E. Miroshnichenko, A.I. Smirnov, Y.S. Kivshar, Phys. Rev. B 90, 035412 (2014)

    ADS  Google Scholar 

  30. M. Zdanowicz, S. Kujala, H. Husu, M. Kauranen, New. J. Physics 13, 023025 (2011)

    ADS  Google Scholar 

  31. N.C. Panoiu, W.E.I. Sha, D.Y. Lei, G.-C. Li, J. Opt. 20, 083001 (2018)

    ADS  Google Scholar 

  32. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nature Photon. 4, 611 (2010)

    ADS  Google Scholar 

  33. F.H.L. Koppens, D.E. Chang, F. Javier García de Abajo, Nano Lett. 11, 3370 (2011)

    ADS  Google Scholar 

  34. T. Low, P. Avouris, ACS Nano 8, 1086 (2014)

    Google Scholar 

  35. P. Kumar, A. Lakhtakia, P.K. Jain, JOSA B 36, F84 (2019)

    Google Scholar 

  36. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, P.-F. Brevet, Phys. Rev. Lett 105, 077401 (2010)

    ADS  Google Scholar 

  37. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, P.-F. Brevet, J. Phys. Chem. C 117, 1172 (2013)

    Google Scholar 

  38. B.C. Yildiz, M.E. Tasgin, M.K. Abak, S. Coskun, H.E. Unalan, A. Bek, J. Opt. 17, 125005 (2015)

    ADS  Google Scholar 

  39. S.A. Scherbak, A.A. Lipovskii, J. Phys. Chem. C 122, 15635 (2018)

    Google Scholar 

  40. K.N. Reddy, P.Y. Chen, A.I. Fernandez-Dominguez, Y. Sivan, Phys. Rev. B 99, 235429 (2019)

    ADS  Google Scholar 

  41. B.K. Juluri, Y.B. Zheng, D. Ahmed, L. Jensen, T.J. Huang, J. Phys. Chem. C 112, 7309 (2008)

    Google Scholar 

  42. N. Daneshfar, K. Bazyari, Appl. Phys. A 116, 611 (2014)

    ADS  Google Scholar 

  43. N. Daneshfar, H. Foroughi, Physica E 83, 268 (2016)

    ADS  Google Scholar 

  44. Y. Huang, A.E. Miroshnichenko, L. Gao, Sci. Rep. 6, 23354 (2016)

    ADS  Google Scholar 

  45. K. Zhang, L. Gao, Opt. Express 25, 13747 (2017)

    ADS  Google Scholar 

  46. T. Naseri, N. Daneshfar, M. Moradi-Dangi, F. Eynipour-Malaee, J. Theor. Appl. Phys 12, 257 (2018)

    ADS  Google Scholar 

  47. K. Tanabe, J. Phys. Chem. C 112, 15721 (2008)

    Google Scholar 

  48. J. Zhu, H. Liu, L.-Q. Huang, J. Appl. Phys 105, 114319 (2009)

    ADS  Google Scholar 

  49. J.W. Dadge, M. Islam, A.K. Dharmadhikari, S.R. Mahamuni, R.C. Aiyer, J. Phys.: Condens. Matter 18, 5405 (2006)

    ADS  Google Scholar 

  50. S.A. Maier, H.A. Atwater, J. Appl. Phys 98, 011101 (2005)

    ADS  Google Scholar 

  51. J. Butet, P.-F. Brevet, O.J.F. Martin, ACS Nano 9, 10545 (2015)

    Google Scholar 

  52. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Laser Photonics Rev. 4, 795 (2010)

    ADS  Google Scholar 

  53. P.C. Ray, Chem. Rev. 110, 5332 (2010)

    Google Scholar 

  54. A.N. Grigorenko, M. Polini, K.S. Novoselov, Nature Photonics 6, 749 (2012)

    ADS  Google Scholar 

  55. D. Wu, X.-D. Xu, X.-J. Liu, Solid State Commun. 148, 163 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Daneshfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshfar, N., Noormohamadi, Z. Optical surface second harmonic generation from plasmonic graphene-coated nanoshells: influence of shape, size, dielectric core and embedding medium. Appl. Phys. A 126, 55 (2020). https://doi.org/10.1007/s00339-019-3228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3228-y

Navigation