Skip to main content
Log in

Experimental and computational perspectives on linear and non-linear optical parameters of an orthorhombic crystal for optical limiting applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

4-Dimethylaminopyridinium 3,5-dinitrobenzoate (DMAPDNBA), a charge transfer complex, was synthesized and successfully grown by slow evaporation solution growth technique. Single-crystal X-ray diffractogram reveals that the material crystallizes in orthorhombic system with non-centrosymmetric space group P212121 with cell parameters a = 5.92 Å, b = 13.77 Å, c = 18.64 Å, and V = 1519 Å3. Powder XRD and FTIR spectral investigation were carried out to analyse the crystallinity of the material and for assigning vibrations to identify the different functional groups existing within the material. The optical transmittance in the visible and near IR (400–800 nm) regions with lower cutoff wavelength of 227 nm, luminescence spectrum, and the optical band gap of 5.45 eV sufficiently fulfilled the requirement for non-linear optical applications. The thermal exploration analysis (TG–DSC) confirmed the stable nature of the compound up to 190 °C, and dielectric constant measurement of the obtained sample enhanced the property of non-linear optical activity at higher frequencies. The mechanical property of DMAPDNBA was evaluated using Vickers’s hardness test which confirmed that the material belonged to the soft category. The frequency conversion efficiency of the grown sample was measured to be eightfold that of the reference potassium dihydrogen phosphate, which exploits the potentiality of the charge transfer complex to be used as a promising candidate for various laser-assisted NLO applications. Third-order non-linearity was measured adopting Z-Scan technique, and the optical limiting/switching efficiency of the complex was verified with the optical limiting threshold value of 10.64 J/cm2 and figure of merit property, confirming the capability of the material for switching applications. The threshold value of laser damage was found to be 1.74 GW/cm2. Theoretical investigations were performed using density functional theory (DFT-B3LYP) approach to estimate and predict various linear and non-linear optical properties of the DMAPDNBA complex. The first-order hyperpolarizability value of the DMAPDNBA molecule was found to be 19 times that of the standard organic crystal, urea. In short, all the above findings designate the candidature of the charge transfer complex, DMAPDNBA, for photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K. Naseema, V. Rao, K.V. Sujith, B. Kalluraya, Curr. Appl. Phys. 10, 1236 (2010)

    ADS  Google Scholar 

  2. N.P. Prasad, Photonics and Nonlinear Optics with Molecular Materials and Polymers. Polymer 32, 1746 (1991)

    Google Scholar 

  3. K. Naseema, V. Rao, K.B. Manjunatha, G. Umesh, K.V. Sujith, B. Kalluraya, J. Opt. 39, 143 (2010). https://doi.org/10.1007/s12596-010-0006-9

    Article  Google Scholar 

  4. K. Naseema, S. Ravi, R. Sreedhran, Chinese journal of Physics. 60, 612 (2019). https://doi.org/10.1016/j.cjph.2019.05.037

    Article  ADS  Google Scholar 

  5. R.J. Collins, D.F. Nelson, A.L. Schawlow, W. Bond, C.G.B. Garrett, Coherence W. Kaiser, Phys. Rev. Lett. 5, 303 (1960)

    ADS  Google Scholar 

  6. J. Pecaut, M. Bagieu-Beucher, Acta Crystallogr. C 49, 834 (1993)

    Google Scholar 

  7. R.S. Mulliken, J. Am. Chem. Soc. 72, 600 (1950)

    Google Scholar 

  8. R.S. Mulliken, W.B. Pearson, Molecular Complexes (Wiley Publishers, New York., 1969)

    Google Scholar 

  9. J.P. Castaneda, G.S. Denisov, S. Yu Kucherov, V.M. Schreiber, A.V. Shurukhina, J. Mol. Struct. 660, 25 (2003)

    ADS  Google Scholar 

  10. S. Manivannan, K. Dhanuskodi, Cryst. Growth Des. 6, 1285 (2006)

    Google Scholar 

  11. P. Srinivasan, T. Kanagasekaran, N. Vijayan, G. Bhagavannarayana, R. Gopalakrishnan, P. Ramasamy, Opt. Mater. 30, 553 (2007)

    ADS  Google Scholar 

  12. M. Saravanan, Opt. Mater. 58, 327 (2016)

    ADS  Google Scholar 

  13. I.P. Bincy, R. Gopalakrishnan, Opt. Mater. 402, 22 (2014)

    Google Scholar 

  14. J. Johnson, R. Srineevasan, D. Sivavishnu, Materials Science for Energy Technologies. (2019). https://doi.org/10.1016/j.mset.2019.02.001)

    Article  Google Scholar 

  15. J. Johnson, R. Srineevasan, D. Sivavishnu, Chemistry Reports. 21, 20 (2018)

    Google Scholar 

  16. J. Johnson, R. Srineevasan, D. Sivavishnu, Physica B: Physics of Condensed Matter (2018). https://doi.org/10.1016/j.physb.2018.03.038

    Article  Google Scholar 

  17. M. Rajkumar, M. Saravanabhavan, A. Chandramohan, Opt. Mater. 72, 247 (2017)

    ADS  Google Scholar 

  18. P.N. Prasad, Polymer 32, 1746 (1991)

    Google Scholar 

  19. M.L. Carolin, Matter. Lett. 62, 2245 (2008)

    Google Scholar 

  20. M. Amalanathan, Spectrachimica Acta Part A. 78, 1437 (2011)

    ADS  Google Scholar 

  21. P.L. Olive, Br. J. Cancer 40, 83 (1979)

    Google Scholar 

  22. P. Srinivasan, T. Kanagasekaran, N. Vijayan, G. Bhagavanarayana, R. Gopalakrishnan, P. Ramasamy, Opt. Mat. 30, 553 (2007)

    Google Scholar 

  23. S. Manivannan, S. Dhanuskodi, Cryst. Growth Des. 4, 845 (2004)

    Google Scholar 

  24. N. Ennaceur, R. Henchiri, B. Jalel, M. Cordier, I. Ledoux-Rak, E. Elaloui, J. of Mol. Structure. 1144, 25 (2017)

    ADS  Google Scholar 

  25. R. Henchiri, N. Ennaceur, M. Cordier, I. Ledoux-Rak, E. Elaloui, J. Phys. Chem. Solids 106, 58 (2017)

    ADS  Google Scholar 

  26. Hiroyuki Hosomi, Shigeru Ohba, Yoshikatsu Ito, Acta Cryst. C56, 149 (2000)

    Google Scholar 

  27. S. Stella Mary, S. Shahil Kirupavathy, P. Mythili, P. Srinivasan, T. Kanagasekaran, R. Gopalakrishnan, Spectrochim. Acta, Part A 71, 10 (2008). https://doi.org/10.1016/j.saa.2007.11.014

    Article  ADS  Google Scholar 

  28. K.V. Rajendran, D. Jayaraman, R. Jayavel, P. Ramasamy, J. Cryst. Growth 254, 461 (2003). https://doi.org/10.1016/S0022-0248(03)01097-2

    Article  ADS  Google Scholar 

  29. T. Uma Devi, N. Lawrence, R. Ramesh Babu, K. Ramamurthi, G. Bhagavannarayana, J. Min. Mater. Character. Eng. 8, 393 (2009)

    Google Scholar 

  30. J. Ramajothi, S. Dhanuskodi, Spectrochim. Acta, Part A 68, 1213 (2007). https://doi.org/10.1016/j.saa.2007.01.030

    Article  ADS  Google Scholar 

  31. M.M.A. Jinnah, M. Umadevi, V. Ramakrishnan, J. Raman Spectrosc. 35, 956 (2004)

    ADS  Google Scholar 

  32. M. Parthasarathy, R. Gopala Krishnan, Opt. Mat. 35, 2056 (2013)

    Google Scholar 

  33. M.S. Kajamuhideen, K. Sethuraman, K. Ramamurthi, P. Ramasamy, J. Crystal Growth 483, 16 (2017)

    ADS  Google Scholar 

  34. I.P. Bincy, R. Gopalakrishnan, J. Cryst. Growth 1, 1 (2014). https://doi.org/10.1016/j.jcrysgro.2014.03.024

    Article  Google Scholar 

  35. J. Dalal, N. Sinha, H. Yadav, B. Kumar, RSC Adv. 5(71), 57735 (2015)

    Google Scholar 

  36. H. Yadav, N. Sinha, B. Kumar, Cryst. Eng. Commun. 16(46), 10700 (2014)

    Google Scholar 

  37. K. Sangwal, Mater. Chem. Phys. 63(2), 145 (2000)

    Google Scholar 

  38. E.M. Onitsch, Mikroskopie. 95, 12 (1956)

    Google Scholar 

  39. M. Hanneman, Metall. Manch. 23, 135 (1941)

    Google Scholar 

  40. K. Sangwal, Mater. Chem. Phys. 63, 145 (2000)

    Google Scholar 

  41. K. Jagannathan, S. Kalainathan, T. Gnanasekaran, Mater. Lett. 61, 4485 (2007)

    Google Scholar 

  42. E.M. Onitsch, Over the microhardness of the metals. Mikroskopie. 2, 131 (1947)

    Google Scholar 

  43. R. Ramesh Babu, K. Sethuraman, N. Vijayan, G. Bhagavannarayana, R. Gopalakrishnan, P. Ramasamy, Cryst. Res. Technol. 41(9), 906 (2006)

    Google Scholar 

  44. S.K. Arora, V. Patel, B. Amin, A. Kothari, Bull. Mater. Sci. 27, 141 (2004). https://doi.org/10.1016/j.matchemphys.2003.10.017

    Article  Google Scholar 

  45. A.M. Badr, H.A. Elshaikh, I.M. Ashraf, J. Eng. Technol. Res. 3, 62 (2011)

    Google Scholar 

  46. K. Boopathi, P. Rajesh, P. Ramasamy, Mater. Res. Bull. 47(9), 2299 (2012)

    Google Scholar 

  47. C. Balarew, R. Duhlew, J. Solid State Chem. 55, 1 (1984). https://doi.org/10.1016/0022-4596(84)90240-8

    Article  ADS  Google Scholar 

  48. K.V. Rao, A. Smakula, J. Appl. Phys. 37, 2031 (1996). https://doi.org/10.1063/1.1714397

    Article  Google Scholar 

  49. S.M. Azhar, S.S. Hussaini, M.D. Shirsat, G. Rabbani, M. Shkir, S. Alfaify, H.A. Ghramh, M.I. Baig, M. Anis, Mater. Res. Innovations 1, 1 (2017). https://doi.org/10.1080/14328917.2017.1392694

    Article  Google Scholar 

  50. R. Ragu, M. Akilam, J.P. Angeleena, P.S. LathaMageshwari, S. JeromeDas, J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854.019-00933-w

    Article  Google Scholar 

  51. P. Karuppasamy, T. Kamalesh, V. Mohankunar, S.A. Kalam, M.S. Pandian, P. Ramasamy, S. Verma, S.V. Rao, J. Mol. Struct. 1, 1 (2018). https://doi.org/10.1016/j.molstruc.2018.08.074

    Article  Google Scholar 

  52. S.K. Kurtz, T.T. Perry, J. App. Phys. 39, 3798 (1968)

    ADS  Google Scholar 

  53. G. Wensheng, G. Fang, W. Chunsheng, L. Qitao, Z. Guangyong, W. Dong, S. Zhongshu, J. Sci. China Chem. 45, 267 (2002)

    Google Scholar 

  54. M.S. Bahae, A.A. Said, T.-H. Wei, IEEE J Quant electron. 26, 760 (1990)

    ADS  Google Scholar 

  55. P.G.L. Frobel, S.R. Suresh, S. Mayadevi, S. Sreeja, C. Mukherjee, C.I. Muneera, Mater. Chem. Phys. 129, 981 (2011)

    Google Scholar 

  56. Y.-D. Zhang, Z.-Y. Zhao, C.-B. Yao, Opt. Laser Technol. 58, 207 (2014)

    ADS  Google Scholar 

  57. M.I. Baig, M. Anis, S. Kalainathan, Mater Technol Adv Perform Mater. 32, 560 (2017)

    Google Scholar 

  58. S.R. Maidur, P.S. Patil, S.V. Rao, AIP Conference Proceeding. 1942, 100013 (2018). https://doi.org/10.1063/1.5028978

    Article  Google Scholar 

  59. CHEMCRAFT, http://www.chemcraftprog.com

  60. M. Uthaykumar, A. PricillaJeyakumar, M. Suresh, S. Chandran, G. Vinitha, Mater. Res. Express. 6, 075102 (2019)

    ADS  Google Scholar 

  61. V. Kannan, S. Karthick, S. Brahadeeshwaran, Z. Phys. Chem. 1, 1 (2018). https://doi.org/10.1515/zpch-2018-1231

    Article  Google Scholar 

  62. N. Moorthy, P.C. JobePrabakar, S. Ramalingam, S. Periandy, G.V. Pandian, Journal of Theoretical & Computational Science 2, 1 (2015). https://doi.org/10.4172/2376-130x.1000137

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank SAIF-IIT Madras for performing single-crystal XRD analysis; Prof. P.K Das, Department of Inorganic chemistry, IISc-Bangalore, for providing laboratory facility to perform SHG measurement and LDT study; VIT-Chennai for microhardness studies; Sacred Heart College, Chennai, for impedance calculation; Mar-Ivanious college, Kerala University, for Z-Scan analysis; Nirmalagiri College, Kerala, and SAT campus, Kannur University, Kerala, for extending help to carry out various characterizations of the synthesized intermediate compound (complex).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Naseema.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, S., Sreedharan, R., Raghi, K.R. et al. Experimental and computational perspectives on linear and non-linear optical parameters of an orthorhombic crystal for optical limiting applications. Appl. Phys. A 126, 56 (2020). https://doi.org/10.1007/s00339-019-3234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3234-0

Keywords

Navigation