Skip to main content
Log in

Removal of Al(III) Ions Using Gellan Gum-Acrylic Acid Double Network Hydrogel

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The objectives of this research were to evolve a gellan gum based double network (DN) hydrogel with high mechanical properties, and investigate its potential as an adsorbent to remove Al(III) ion. The double network hydrogel was synthesized for the first time in the literature, and Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy were utilized for structural and morphological characterization. Gellan gum hydrogel was characterized in terms of mechanical strength. The Al(III) removal behaviour studies were performed in 100 ppm aqueous Al(III) solution, and the kinetic data were correlated with the models of pseudo-first order and second-order. In addition, the equilibrium adsorption data were applied to Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Moreover, the DN hydrogel adsorption capacities were calculated for the regeneration and reuse studies. The DN hydrogel could be used at least five times without significant decreasing in its adsorption capacity. In this work, the possibility of the mechanically developed strong DN hydrogel was observed for Al(III) ion removal behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saleh T-A, Tuzen M, Sarı A (2017) J Environ Chem Eng. 5(3):2853

    CAS  Google Scholar 

  2. Yüce M, Bilgin E, Köse K, Erol K, Köse D-A (2017) J Macromol Sci Part A 54(3):145

    Google Scholar 

  3. Özkahraman B (2018) J Polym Environ 26(3):1113

    Google Scholar 

  4. Wang Z, Wei X, Yang J, Suo J, Chen JLX, Zhao X (2016) Neurosci Lett 610:200

    CAS  PubMed  Google Scholar 

  5. Yavuz H, Say R, Andaç M, Bayraktar N, Denizli A (2004) Biomagn Res Technol 2(5):1

    Google Scholar 

  6. Septhum C, Rattanaphani S, Bremner J-B, Rattanaphani V (2007) J Hazard Mater 148:185

    CAS  PubMed  Google Scholar 

  7. Ahmed E-M (2015) J Adv Res 6(2):105

    CAS  PubMed  Google Scholar 

  8. Bal A, Özkahraman B, Özbaş Z (2016) J Appl Polym Sci 133:43226

    Google Scholar 

  9. Negrini C-N, Tarsini P, Tanzi M-C, Fare S (2018) J Appl Polym Sci 136(8):47104

    Google Scholar 

  10. Pakdel P-M, Peighambardoust S-J (2018) J Environ Manag 217:123

    Google Scholar 

  11. Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MFT, Rubira AF, Muniz EC (2015) Eur Polym J 72:365

    CAS  Google Scholar 

  12. Mun S, Kim Y-R, McClements D-J (2015) Food Chem 175:454

    Google Scholar 

  13. Peppas N-A, Blarcon S-V (2016) J Controll Release 240:142

    CAS  Google Scholar 

  14. Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen J-J (2016) Mater Chem A 4:10885

    CAS  Google Scholar 

  15. Haque M-A, Kurokawa T, Gong J-P (2012) Polymer 53:1805

    CAS  Google Scholar 

  16. Zhuang Y, Yu F, Chen J, Ma J (2016) J Environ Chem Eng 4:147

    CAS  Google Scholar 

  17. Gong J-P (2010) Soft Matter 6:2583

    CAS  Google Scholar 

  18. Gong J-P, Katsuyama Y, Kurokawa T, Osada Y (2003) Adv Mater 15(14):1155

    CAS  Google Scholar 

  19. Yasuda K, Gong J-P, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, Ueno M, Osada Y (2005) Biomaterials 26:4468

    CAS  PubMed  Google Scholar 

  20. Xu R, Zhou G, Tang Y, Chu L, Liu C, Zeng Z, Luo S (2015) Chem Eng J 275:179

    CAS  Google Scholar 

  21. Ma J, Zhou G, Chu L, Lin Y, Liu C, Luo S, Wei Y (2017) ACS Sustain Chem. Eng 5:843

    CAS  Google Scholar 

  22. Chu L, Liu C, Zhou G, Xu R, Tang Y, Zeng Z, Luo S (2015) J Hazard of Mater 300:153

    CAS  Google Scholar 

  23. Zhou G, Luo J, Liu C, Chu L, Crittenden J (2018) Water Res 131:246

    CAS  PubMed  Google Scholar 

  24. Abdel-Halim E-S, Al-Deyab S-S (2014) React Funct Polym 75:1

    CAS  Google Scholar 

  25. Zeng G, Liu Y, Tang L, Yang G, Pang Y, Zhang Y, Zhou Y, Li Z, Li M, Lai M, He X, He Y (2015) Chem Eng J 259:153

    CAS  Google Scholar 

  26. Shin H, Olsen B-D, Khademhosseini A (2012) Biomaterials 33:3143

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shin H, Olsen B-D, Khademhosseini A (2014) J Mater Chem B 2:2508

    CAS  PubMed  Google Scholar 

  28. Coutinho D-F, Sant S, Shakiba M, Wang B, Gomes M-E, Neves N-M, Reis R-L, Khademhosseini A (2012) J Mater Chem 22:17262

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jampen S, Britt I-J, Tung M-A (2000) Food Res Int 33:579

    CAS  Google Scholar 

  30. Silva GM, Rocha RFP, Costa MPM, Mello Ferreira IL, Delpech MC (2018) J Mol Liq 268:201

    Google Scholar 

  31. Weng L, Gouldstone A, Wu Y, Chen W (2008) Biomaterials 29:2153

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Emik S (2014) React Funct Polym 75:63

    CAS  Google Scholar 

  33. Hamcerencu M, Desbrieres J, Khoukh A, Popa M, Riess G (2008) Carbohydr Polym 71:92

    CAS  Google Scholar 

  34. Karthika J-S, Vishalakshi B (2015) Int J Biol Macromol 81:648

    CAS  PubMed  Google Scholar 

  35. Settimio P, Patrizia P, Inge D, Shuichiro K, Annabella V, Maria Antonietta C (2015) Int J Biol Macromol 72:1335

    Google Scholar 

  36. Lim S-L, Ishak A, Azwan M-L, Sains M (2015) Sains Malays 44(6):779

    CAS  Google Scholar 

  37. Fahmy A, Mix R, Schönhals A, Friedrich JF (2011) Plasma Process Polym 8:147

    CAS  Google Scholar 

  38. Milosavljevic N-B, Ristic M-D, Peric-Grujic A-A, Filipovic J-M, Strbac S-B, Rakocevic Z-L, Kalagasidis Krusic M-T (2011) Colloids Surf A 388:59

    CAS  Google Scholar 

  39. Pacelli S, Paolicelli P, Pepi F, Garzoli S, Polini A, Tita B, Vitalone A, Casadei M-A (2014) J Polym Res 21:409

    Google Scholar 

  40. Kasgoz H, Ozbas Z, Esen E, Sahin C-P, Gurdag G (2013) J Appl Polym Sci 130:4440

    CAS  Google Scholar 

  41. Lim SF, Lee AYW (2015) Environ Sci Pollut Res 22:10144

    CAS  Google Scholar 

  42. Özkahraman B, Özbaş Z, Öztürk-Bal A (2018) J Polym Environ 26:4303

    Google Scholar 

  43. Lagergren S (1898) Handlingar 24(4):1

    Google Scholar 

  44. Ho Y-S, McKay G (1999) Process Biochem 34(5):451

    CAS  Google Scholar 

  45. Langmuir I (1918) J Am Chem Soc 40:1361

    CAS  Google Scholar 

  46. Freundlich H-M-F (1906) J Phys Chem 57:385

  47. Dubinin M-M, Radushkevich L-V (1947) Phys Chem Sect 55:331

    Google Scholar 

  48. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) Adv Funct Mater 14:1124

    CAS  Google Scholar 

  49. Myung D, Koh W, Ko J, Hu Y, Carrasco M, Noolandi J, Ta CN, Frank CW (2007) Polymer 48:5376

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengi Özkahraman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özkahraman, B., Özbaş, Z. Removal of Al(III) Ions Using Gellan Gum-Acrylic Acid Double Network Hydrogel. J Polym Environ 28, 689–698 (2020). https://doi.org/10.1007/s10924-019-01636-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01636-3

Keywords

Navigation